

GAMES APPLES PLAY

GAWIES

APPLES PLAY

by

Mark James Capella

and

Michael D. Weinstock

Commentaries on Games Listings by

Scott L.Singer

Cover Art and Illustrations by

Art Huff

DATAMOST

8943 Fullbright Avenue
Chatsworth, California 91311
(213) 709-1202

Reston Publishing Company, Inc.
A Prentice-Hall Company
Reston, Virginia

ISBN 0-8359-2417-3

This book is published and copyrighted by DATAMOST. All rights are reserved by
DATAMOST. Copying, duplicating, selling or otherwise distributing this product is hereby
expressly forbidden except by prior written consent of DATAMOST.

The word APPLE and the Apple logo are registered trademarks of APPLE COMPUTER, INC.

APPLE COMPUTER, INC. was not in any way involved in the writing or other preparation of
this book, nor were the facts presented here reviewed for accuracy by that company. Use of the
term APPLE should not be construed to represent any endorsement, offical or otherwise, by
APPLE COMPUTER, INC.

. _/

ACKNOWLEDGMENTS

To mywife, Genie, forall those times she turned her head to see me sneaking
up the stairs to the computer room.

Mark James Capella

To Diana and Aaron. Diana for her patience, understanding and the cold
dinners she ate while waiting for me to finish justalittle bit more. Aaron for
the thrill of understanding what is means having a four year old around
when things just aren’t working correctly.

To Brian Davis for his creative artistic talents that greatly assisted our
effort.

To Scott Singer for his enlightening commentary on the programs.
To Dave Gordon because he is Dave Gordon, a trusted friend.

Michael D. Weinstock

Table of Contents

Introduction -- Using Games to Learn BASIC 9
34 155 23 PR 17
Apple Learner e 33
Biothythm e 37
Connect Five ... i i i i i i i i i it i e et e e 43
DI gitS ottt e e e e e e e e 49
GIUE SteW oottt i it it it ettt ettt et e 55
L2 T o 63
Kingdom ...t 69
Magic SQUALES . ..ottt ettt e e 75
NUMDEIS AWAY ..ottt ettt e e e ettt ettt 81
RSO ittt i i e i e e e e e 89
25 o 13 L o3 WP 93
Word Scramble i e 97
MUBBLE CHASE ...ttt ittt et ettt 105
Alr Attack ... e 127
Artist Board ... i e e 133
Barrelof Fun i, e e 137
BloCk B .ttt e e 145
Brain Teaser . .ovutii ettt ittt ittt e e e 151
Brick Wall ... e 157
Craps ..ooovvvviieniin, o 163
Dragon’s Lairottt it e e e 169
Hang Manttt ittt ittt teneeneeneeeaennenans 177
ol X 183
s Vo Yol <@ 1 189
Leaky Faucetooiiiiiiiiiii ittt ettt eiiiaeeeenns 195
Match the Key ...t i ettt 199
Miniature Golf i i e e e 205
MoVIng Target ..ottt ettt ettt et e 217
Point Attackttt e e 221
RODBOt Chase ..ottt et ettt ettt ettt it 225
Safe Cracker ..ottt e 231
Saucer Duelsot e e 237
SChMOO .. e 243
Stardodger .. ot e 249

Stranded e ... 255

4)
INTRODUCTION
Using games to learn BASIC

Commercially written games for the Apple computer are now being written in
machine language with elaborate copy protection schemes. Techniques to
increase speed and foil pirates also have the effect of making games both hard
to understand and hard to learn from. Such was not always the case. In the
good old days of 16K Apples and cassette tapes, the games were given away at
user groups. Most of the games were in Integer BASIC. The listings were
published in magazines and newsletters, and seldom exceeded two pages.
Novice programmers didn't care that you could drink an entire soda pop
before the ship got across the screen or that you could watch the bombs falling
in slow motion, blip blip blip. Most of the people using those games
wanted to learn about programming color graphics, and games were a good
way to learn. Author Mike Weinstock has compiled a selection of the classic
games such as AIR ATTACK and SAUCER DUELS that have been the
precursor of many of the faster arcade games. Many types of games are not
dependent on speed, such as adventure games like DRAGON’S LAIR, word
games like HANG MAN and board games such as CONNECT-FIVE. These are
all included along with many clever new games written by the author.

ﬂ

The games are written in Applesoft BASIC in a structured format. Structuring
makes the programs more understandable and allows you to easily lift or
adapt any routines that you like for inclusion in your own programs. The
workings of each game are explained in a way that allows you to modify and
customize the games to your heart’s content. Two of the games, Mubble Chase
and Sci Fi, are examined line by line. Sci-Fi introduces the principles of text
formatting, word games, data statements, and input routines. Mubble Chase
will help you understand how grids are constructed and graphic figures are
moved and detected.

Most of the programs in this book are structured in the same way, with a
GOSUB, an empty target line and a RETURN line in exactly the same place.
This allows you to start writing the ‘action’ parts of the program first and fill in
the title screen, instructions, and ending routines later. This is a complete
outline program that will RUN but doesn’t do anything;:

/
10 REM STRUCTURED PROGRAM
20 GOSUB 1000: REM INSTRUCTIONS
30 GOSUB 2000: REM SETUP
49 GOSUB 300@: REM PLAY
5@ GOSUB 4000: REM END
6@ END
1000:
1990 RETURN SUBROUTINES
2000:
2990 RETURN _/ oee
3000:
399@ RETURN .
4000 : 2000
48980 RETURN

2000 \&000
-------- - 5000

STRUCTURED ' <
PROGRAMING / 6000
i !
7 i

\

% |

a)

You can use this program as an outline for your own original programs. It
helps you to stay organized and reminds you of what parts need finishing.
Give this progam a snappy title such as EMPTY and save it on a diskette. Load
it into memory when you feel creative and start writing within the framework.

Techniques are given here that allow you to dissect basic programs and see
what makes them tick. The games themselves are hours of fun. You will learn
a lot about programming and de-bugging by typing in the games from the
book and making them run correctly, or you may order the games diskette
from DataMost, and use dissecting techniques described here to investigate

their inner workings. Either way, you will not find a more enjoyable way to
learn BASIC!

Do not be afraid of your computer! Remember, you are smart and the
computer is dumb. The reason that programs have bugs in them is that the
computer has to be told every little thing. It can’t figure out a misspelled word
the way you can. Fortunately Applesoft was written by some very clever
humans who tried to program the computer to forgive as many errors as
possible and to give very clear error messages for mistakes it does find. Relax
and have fun. NOTHING you type in from the keyboard can hurt the
workings of the computer, you will just get what is called GIGO—garbage in—
garbage out.

Whatever is typed into the computer’s memory or loaded in from a tape or
disk drive exists in a temporary state. If you turn off the computer or the dog
trips over the power cord the program is gone—vaporized. If the program
came from a tape or diskette it is still there and can be re-loaded as if nothing
happened. We emphasize this because we want you to play around with the
programs, change the lines around, put in silly statements and eventually get
it so messed up that you will want to throw it away and load in the original.
This is the best way to learn. Try these techniques for investigating the inner
workings of programs:

Change lines

As an example, if you see COLOR = X, change it to color = 8 (red). Run the
program and you will see that some figure that is supposed to change color
now just stays red; often figures are drawn in one color, redrawn in black, and
drawn again in color one space over. This makes the figure appear to move. If
the figure becomes a red streak on the screen you have discovered the line that
moves the figure. You will also know when the line is used in the program and
what is affected by the variation you introduced. Change variables (A B XY
etc.) to arbitrary numbers. Do things get stuck? Do you get overflow or ‘illegal

11

4)

quantity’ errors? Variables are often the hardest things to understand. After a
line containing a variable ‘A (or any variable) you can add a print statement
:PRINT A . A number representing the value of ‘A will flash on the screen
when the line gets executed and this number may give a clue to the function of
variable ‘A (we don’t guarantee it).

Use TRACE

Just type this magic word before you run the program and the line numbers
that are being executed are displayed at the bottom of the screen. Watch for
repeated series; this is the program loop where the action occurs. TRACE stays
on until you enter NOTRACE or RESET.

Use STOP

Put in STOP in a separate line, giving it a number between two numbered
lines in the program. The program will stop at that point and wait for you to |
type CONT(inue). By using STOP you can tell what parts of the program
execute before STOP is reached.

12

Detour

If you want to know what the program will do without line 100, put a GOTO
in front of it sending the program around line 100 without ever executing it.

99 GOTO 112 (add this line)
19@ E=MC*MC (mvstery line)
11 PRINT "Hello"

Now you can see what the program does without line 100. Does it still run?
What goes wrong? Restore the program by typing 99 with nothing after it.
This deletes both the line and the line number that you added.

Delete lines

A quicker technique than the detour. Just type the line number and RETURN
to eliminate the line from the program. Use this method when the line
numbers are too close together for detouring or have lots of GOTO and
RETURN. Just reload the program from diskette to undo all your surgical
mishaps.

Add a ‘beep’

Na

N Na W
N ' N
D

.{\\\\\\Q\

13

~

If you want to know when a line is executed add a line PRINT CHR$(7)
immediately after it. Be sure the line above doesn’t send the program
somewhere else with a GOTO or RETURN. If it does, rewrite the line with
PRINT CHRS$(7): at the beginning of the mystery line. The computer will
obligingly beep when the line is executed.

Isolate parts of programs

Take away all but a few lines of the program by use of DEL(ete) 100,1200 or
whatever line numbers are appropriate. Get the portion that is left to work by
adding a few lines of your own. Mix parts of programs together using the
Renumber program that is part of the DOS master diskette that comes with the
Apple. Renumber has a MERGE utility that lets you put one program on hold,
load another program, and merge the two together. You may get crazy results,
but a lot can be learned in the process. You can name and save a part of a
program even if it doesn’t run. Leave yourself little notes (REMs) to remind
you where the pieces came from.

7,
7 p 0 %) N
,)3“('((‘3 \
(- /// ((0 © Di > \
4 [)
173 1P 4 y ’{ Q\&\b
« : 2 ///\ ® .
\ ° ‘ Y 7 & /‘F/‘FE_\ T "\; <
L - ‘l ~~~~~ U
= P e o s
o =, N RBOEA
Wi e 0 Nee OEEEEIEO oL
' ol o} o= — (@]
= e 6 (RD=" 71 8)r

14

(‘

Add paddle or keyboard input
If you want to see the action of variable X’ you can add a line

NNN (livne wnumber) X = PDL(@)

You have to experiment around to find the right place for this line in the
program loop. You will be able to control some action of the program that was
previously automatic. Whatever value the program assigned to X up this point
will be replaced by the X you insert. The paddle returns a value from 0 to 255.
If this number is too large and makes the program crash, the value of paddle
(0) can be divided to yield just the right range of values:

X = INT (PDL (@) / B.3)

This command will give you INTegers (whole numbers with no decimals) from
0 to 39 to use with the lo-res graphics screen that is 40 characters wide. Of
course additional variables can be controlled with paddle (1) and keyboard
inputs until the entire program loop is under your control.

Save the programs you have changed around

When you get something that works, save it as an intermediate version even if
you want to continue making changes. Often we make some useful changes
and then mess the program up with later additions. You can delete extra
versions later on if you run short of disk space. The only way to lose a
program on diskette is to save another program with the same name on the
same diskette. SO USE A DIFFERENT NAME!

Don’t forget that you must turn on the computer with a DOS diskette in drive
number one in order to be able to save programs to diskette. This is called
BOOTING DOS. You can check to see if DOS is there by typing CATALOG.
Always keep a few initialized empty diskettes handy, because the diskette must
be initialized before it can be used. Here is a handy little HELLO program that
will display the catalog of the diskette every time it is booted:

Turn on the Apple with the DOS Master diskette in drive one. When the]
prompt appears type NEW

10 TEXT:HOME

20 D$= CHR$(4):REM THIS IS CONTROL D
30 PRINT "JOHN DOE’S GAME DISKETTE"
48 PRINT "TODAY'S DATE"

5@ PRINT D$3i"CATALOG"

15

- \

Run the program to test it out, and then place a new diskette in drive one. Be
sure the diskette is empty because initializing a diskette erases everything that
was on it. Add this line to the HELLO program:

6@ NEMW

Don't run the program after you have added this line, because line 60 erases
the HELLO program from memory and leaves the computer ‘empty’ for your
program to be entered.

- Type INIT HELLO <RETURN>

Apple will create an initialized diskette that will display its catalog when
booted and then clear the decks for your programs. This diskette will load

DOS and allow you to save programs. You will not have to use the DOS
MASTER diskette first.

/

Before the individual programs are explained, copy and run the following
program.

10 GR

20 FOR I = © TO 135

30 COLOR= 1

49 VLIN 0,34 AT 2%I+3
30 NEXT

6@ PRINT " * * 111
70 PRINT " 0 1 3 4 3"

(NI

¥ * * * 1 1
6 78901

LI

* % *
2 34
You will note that above the zero (0) there is, apparently, a blank space.

Actually, the color zero is black (the background color), so what you see (or
don't see) is a black line drawn on a black background. -

Fill up your program diskette and have fun.

A note about BUGS! It is not inconceivable that a few mistakes have crept
into the following listings. Trust your intuition and tinker with the program
even if you have to change what is in the book. Please drop us a card if you
find a real boo-boo.

16

This program is not a game, rather, it is an entertaining collection of short
stories which you make as personal as you want. You are given the chance to
enter your own data. As with MUBBLE CHASE, this program will be
described line by line.

10 REM stands for REMark. Any comments, numbers, symbols, expletives, or
anything else may follow REM. In this case, the remark is used to highlight

the program name. The computer, in effect, ignores the material which follows
REM. In this case, the

REMark 30 o 3 2 3 2 3 3 O 3 3 2 S b S IS made.

11-16 completes the title with REM statements including two blank lines for
readability.

20 The entire program is controlled by lines 20 through 50. There are actually
two parts to line 20. First, GOSUB 1000 instructs the computer to go to line
1000, and to continue from there until the command RETURN is encountered.
The second instruction, REM, is allowed on the same line for only one reason.
The colon (:) allows the programmer to clump many, not necessarily related,
instructions onto the same command line. This is usually done to show that
certain pieces of a program are so closely related, that to isolate them on
separate lines would belie their common purpose or association. The REMark:
INSTRUCTIONS is the programmer’s way of telling the reader that the
subroutine beginning at line 1000 (GOSUB 1000) is where you can find the
INSTRUCTIONS. In this case, the remark serves to explain the purpose of the

subroutine rather than serving the equally important, but more eccentric, role
of lines 10 through 16.

30 When the subroutine, begun by line 20, is completed by the RETURN
statement, the program, having completed line 20, drops down to the next

17

sequential instruction, which in this case is line 30. Like line 20, this line first
initiates a subroutine (GOSUB 2000), and then informs the reader as to the
main emphasis of the subroutine, which is the program SET-UP.

40 This line is identical, in function, to line 30.
50 END returns control to the machine. Control WAS with the program.
1000 This line is the ‘target’ of the GOSUB in line 20.

- 1001 Here, the REMark: *** INSTS is again made to inform the reader of the
function of the subroutine.

1010 This line contains three, distinct instructions. TEXT instructs the
computer to change to (if not already in) the text mode. In this mode, all forty
lines are reserved for text. The use of color is reserved for the graphics mode.
Next, the instruction NORMAL is encountered. This command instructs the
computer to display the text using white letters on a black background. HOME
clears the screen of all text. Instructions such as this are called ‘housekeeping,
and should be included in all your programs.

1020 VTAB is the programmer’s way of telling the computer to Vertically TAB
down three spaces. The reason that VTAB instructs the computer to tab
DOWN, is that in terms of X and Y, 0,0 is in the UPPER left-hand corner. After
the computer Vertically TABs down three (3) lines from the top of the screen, it
is told to Horizontally TAB thirteen (13) spaces to the right. The next
instruction, PRINT, tells the computer to prepare to output whatever follows.
If the material is written between a set of quotes, then whatever is enclosed by
the quotes is printed verbatim. If there are no quotes, then the numeric value
of the variable will be printed. To illustrate, if a program reads: 10 X = 5

20 PRINT “X+3” the output will read ‘X +3". On the other hand, if a program
reads: 10 X = 5 20 PRINT X+ 3 the output will be ‘8’. Line 1020 causes the
message *** SCI-FI *** to be printed. It will begin at a position three lines from
the top (VTAB 3) and thirteen columns from the left margin (HTAB 13).

1030 After Vertically Tabbing down seven (7) lines, the message that appears
between the quotes will be printed. This time, the message will begin at the
left-hand margin.

1040 The empty PRINT statement serves a very useful purpose. What this
statement does is to PRINT a blank line. Notice that some of the words of text
in the listings are split in the middle and continue on the next line, but when
printed on the screen by the program the text is neatly formatted. In the listing

18

there is no space between HOPESOF but it prints correctly when run. HOPE is
at the end of the line, so OF would be indented one space when printed by the
program if a space occurred in the listing. Good looking screen formats are a
matter of trial and error. If you try to edit print statements using the arrow key
you might have noticed that seven blank spaces are inserted in the text
whenever the cursor wraps around a line. There is a cure for this problem that
allows quick editing of basic listings: type POKE 33,33 <RETURN> before
typing LIST. The text will not be indented and can be easily copied over and
parts changed. RESET gets things back to normal.

1050 Notice that the instructions asks you to type RETURN. Nothing gets
entered in ANS$ and in fact it becomes an ‘empty’ string. The function of
ANSS$ in this program is just to hold up the works until you have read the
screen and want to continue. Many programs ask for your name in a similar
situation and then use the input in an appropriate response.

Try this:

1050 VTAB 23: INPUT "HIs WHAT’S YOUR NAME" iNA$
1060 PRINT"WELL HELLO "iNA%3"s LETS PLAY SCI-FI"
1070 FOR I= 1 TO Z000:NEXT I

Since the program would dash off after it received NA$ we add a delay loop in
1070 to wait just long enough for us to read line 1060. You can use any letters
for variables as long as they are not basic commands (reserved words). For
clarity variables should suggest what they perform. Programmers generally
use ANS for answer and NA for names but are not required to. The ON—
GOTO command can provide excellent flexibilty in your programs. In Sci-Fi a
random number sends the program off to different sections, but this command
also works well for branching from a menu:

1 PRINT "PRESS 1 FOR SALADs 2 FOR ENTREEs OR 3 FOR
DESSERT"

20 GET X

30 ON X GOTO 100,200,300

Starting at line 100 you would put the salad choices, etc. If you succeed in
actually teaching the computer to make a salad let me know.

1990 RETURN ends the subroutine initiated by line 20 and begun at line 1000.
At this point, program flow is RETURNed to line 20, and then line 30.

2000 As stated before, a blank colon (:) is a legitimate means of writing a
virtually blank line within the program itself.

19

~

2001 On this line, the main function of the subroutine is detailed by a REM
statement.

2002 This command line serves to separate line 2001 from the body of the text.

2005 This line appears to be a nebulous conglomeration of variables. Not so!
This line serves a very specific purpose. DEF stands for DEFine. The next
question is, what is to be defined? The answer is, a FuNction (FN). The
FuNction being DEFined is R(X). ‘R’ is the given name of the function. ‘X’ is a
variable name which is equal to the FIRST INT (RND (1) * X) + 1. Each time
the FuNction ‘R (any variable or digit)’ is used, the variable inside the '
parentheses assumes the value of ‘INT (RND (1) * (the new variable or digit))

+ 1. Following will be a list which, hopefully, will help you to understand the
‘DEF FN’ statement.

FUNCTION VALUE OF VARIABLE OR DIGIT VALUE OF FUNCTION
AX)=4*X+5 “X’, IF NOT STATED, =0 A(X)=5 (4*0+5)
A(13) 13=13 A(13)=57 (4*13+5)
A(QY) LET US SAY THAT Y=6 A(Y)=29 (4*6+5)
BS(X) = X*X-22 X=0 BS(X) =-22 (0*0-22)
BS(17) 17 = 17 BS(17) =267 (17*17-22)
BS(FN A(Y)) FN A(Y)=29 BS(FN A(Y) =819
A(FN BS(17) FN BS(17) =267 A(FN BS(17) = 1073 (267*4+5)

Here is a program to further illuminate the function of line 2005.

THE PROGRAM THE OUTPUT
10A =17:C = 2.65 =

20 DEF FN PRY(C) = -A * C —

30 PRINT C; : PRINT FN PRY(C) 2.65 -45.05
40 PRINT A; : PRINT FN PRY(A) 17 -289
50 PRINT FN PRY(FN PRY(C)) 765.85

Line 20 identifies the variable as being ‘C’". Therefore, whenever the FuNction
‘PRY’ is executed, the variable (or digit) within the parentheses is substituted
for C. In line 2005, ‘X’ is the variable. If the number five (5) is substituted for
X, then the result is, R(5) = INT (RND (1) * 5 + 1. The reason the DEF FN
instruction is used in this program is so that whenever a random number
between 1 and any other number is needed, all the programmer need write is
R(any other number), and the random result will be generated.

20

r —

2010 This line sets aside sixteen memory locations for SO$. The instruction,
DIM, instructs the computer to DIMension memory so as to allow for sixteen
separate values of SO$. Also, the value of SO is set to zero. The number in
parentheses is the number of the array variable. Apple starts counting from

(0).

2011 This line sets up a one-dimensional table in memory. This table can
accomodate up to sixteen separate values of PL$. Also, PL is set to 0.

2012 and 2013 are both duplicates of lines 2010 and 2011.

2015 The READ statement is an interesting animal. What is does is to find the
first available DATA statement and read from it. In this program, the first
DATA statement is at line 2020. What happens is, the first piece of data before
a comma (Alexander Haig) is read into (stored at) SO$. Then a test is done to
see if SO$ is equal to END. If so, the program falls through to line 2016. If not,
SO is incremented, SO$(0) is assigned the value of the contents of SO$
(Alexander Haig), and then the process is repeated (GOTO 2015). The program
will next READ the second piece of DATA (Ronald Reagan) and store it in SO$.
The test will again prove negative, SO will be incremented, RONALD
REAGAN will be stored at SO$(1), and the process will be repeated. After the
seven pieces of DATA on line 2020 are read, the DATA statement on 2021 is
read next. This time the test on line 2015 (SO$ < > “END”) will prove to be
affirmative, so the program will fall through to line 2016. When you
understand that SO, SO$ and SO$(0) are all different variables you get a gold
star.

2016 Once a DATA statement has been read, it is no longer “available”.
Therefore, the first available data is on line 2025. It seems likely that PL stands
for PLace. Actually, all of the variables are representative of their meaning. |

2017 and 2018 Both of these lines are identical in function to line 2015.
2020 If the data in a DATA statement is to be read into a character-string

location (a variable ended with a dollar sign), then it must be enclosed in
quotes (“ ”). Each item is kept separate from other items by using a comma.

2021 through 2036 These are all DATA statements. All of the data could have
been combined into one long DATA statement. The reason for dividing the
lines was to add clarity.

—

21

2100 (six instructions) HOME clears the screen of text. The VTAB and HTAB
instructions pinpoint where the beginning print location will be. The message,
*** SCI=FI ***, is outputed. The computer is next instructed to TAB down to
line 22. At this point a message is printed.

2110 The messages printed at line 2100 still appear on the screen. Previously,
the printing had been done on line 22 (VTAB) 22). The first instruction brings
the computer back up to line 7 (VTAB 7). The message between the quotes is
printed, starting at line seven at the left-hand margin. The empty PRINT
statement follows the above message with a blank line.

2114 This line sets the counter (CO) to zero.

2115 Line 2110 revealed the nature of the input, now you have a place to put
those names. Just input whatever you'd like. When you’ve entered five pieces
of data, or when you enter nothing, the program will fall through to line 2117.
The data that you input is stored in SO$ (temporarily). Then the input is tested
to see if “nothing” (RETURN) was entered. If so, the program falls through. If
not, the line continues; CO is incremented; SO$ is moved to a permanent
location (SO$(SO)); the counter is incremented and tested; if the counter is not
yet five, then the line is begun again.

2117 This line clears the screen (HOME), and then prints the message
beginning at line three (VTAB 3) column thirteen (HTAB 13).Then the
computer is instructed to tab down to line seven (VTAB 7).

2120-2145 continues the INPUT sequences for Places that will be Attacked,
Names of Monsters, etc.

2150 RETURN ends the subroutine initiated by line 30 and started at line 2000.
Program control is returned to line 30.

2900 This line sets the value of PT to one (1) each time the subroutine (lines
2900-2990) is begun.

2905 MIDS$ states that the computer will look at the MIDdle of a given word.
Which word? All of the remaining pertinent information is in the parentheses.
The word or words that are to be checked by MID$ are contained in WRDS$.
Beginning at the left-hand side of WRD$, the computer will begin the scrutiny
at that character plus PT. If WRD$ contained the phrase “I Love You”, and PT
equals six, then MID$ (WRD$,PT) would instruct the computer to begin
looking at ‘I Love You’ six characters over from the left most character (the ‘e’
in ‘Love’ is the SIXth character). If not specified, the computer will begin the

_/

22

ﬂ

search at the designated location, and continue through to the end of the
word/s. If you want a certain number of characters looked at, just specify that
number after you tell the computer where to start. The following program
should help.

PROGRAM OUTPUT
10 A$ = “SEND MONEY” --

20 PRINT MID$ (A$,4,5) D MON
30 PRINT MID$ (A$,1,6) SEND M

In line 20, the computer is told to search the MIDdle of A$, to begin 4
characters from the left and to PRINT the next 5 characters. Likewise, line 30
tells the computer to PRINT the contents of A$ beginning with character 1,and
to continue for a total of 6 characters. You will admit that at the end of most
words you will find a blank space. The test (IF MID$ (WRD$,PT,1) = “ ”)
checks to see if the character at position PT is a blank space () and it checks to
see if its line position is greater than 30. PEEK (36) surveys the screen and
checks to see if the cursor is beyond column 30 (there are 40 columns to a row
(0-39)). If the cursor is beyond column 30, and MID$ (WRD$,PT,1) = “ ”, then
the next word to be written is in danger of overflowing the right-hand margin.
To prevent this from happening, an affirmative test result will force the
computer to skip to the next line before continuing to print.

’_—

727 ///m ey
///f”””

X,

& \
D /// o L
/o AU/ ‘
7Y /” “-Illll-.-lllll-ll-““u ’
v /// ’/’ ” 011 it

2910 There are two steps to this line. First, PT is incremented (PT = PT +1).
Second, the size of PT is compared to the character LENgth of WRD$. For
example, if WRD$ contained the phrase EARTH WAS ATTACKED, then the
LENgth of WRD$ would equal the number of characters in that phrase (18). To
prevent lines 2905 and 2910 from looping indefinitely, there must be some

23

contingency factor, some restraint which stops the loop. This is the function of
the second half of line 2910. When PT is larger than the length of WRDS$, the
program will fall through to line 2990.

2990 This line completes the subroutine begun at line 2900.
3000 This is the 'target’ of the GOSUB in line 40

3001 The REMark *** PLAY is used to inform the reader of the main function of
the subroutine starting at line 3000.

3010 through 3070 instruct the computer to perform various subroutines.
These subroutines determine which format the story will reflect.

3075 and 3077 A legal filler and an empty line.

s
3080 The computer waits for you to indicate that you have finished reading the
story by pressing RETURN. You could change this line to allow the reader to
escape from further Sci-Fi literature.

3080 INPUT "HAD ENDUGH "3ANS$
3985 IF LEFT$(ANS$%,1) ="v¥" THEN END

Using the LEFT string function to find the first letter of “yes” is standard
practice, and most computerists are used to answering ‘Y’ and expecting it to
work. Yo', “Yea’, “Yes’, will all work. Any other response will end the program.
Instead of END you could branch to a line at the end of the listings and add
any farewell sequence you wished.

3100 This line first clears the screen of text (HOME). Then the function defined
at line 2005 yields a RaNDom number between one and five. If the integer
generated is one, then the program will branch to 3110. If FN R(5) generates
the integer ‘2, then the program branches to 3120. If FN R(5) yields 3,4, or 5,
then the program will branch to 3130,3140, or 3150 respectively.

3110 through 3150 These lines PRINT the five different attention-getting
headlines.

3200 Line 2016 counted the total number of PLaces saved in PL$. FN R(PL) will
yield a RaNDom integer ranging from one to PL. There is the name of a
different place saved in PL$(1), PL$(2), PL$(3).....PL$(PL). What this line does
is to randomly select one of the many PLaces and to copy it into the location
WRDS$. Then the subroutine beginning at line 2900 checks to make sure that
the PLace is not PRINTed in such a manner that it breaches the right margin.

24

3300 Like line 3100, selects a RaNDomly generated integer ranging from one to
five (FN R(5)), and depending on the integer, branches to line 3310, 3320, 3330,
3340, or 3350.

3310 through 3350 These lines serve as continuations of the currently
unfolding drama. One of the five rather repugnant actions is stored in the
location WRD$.

3400 Location WRD$ already contains one of the five actions outlined on lines
3310 to 3350. These lines add the name of one of the many (MO) monsters
(MOS$) to WRD#$. Line 2217 counted the number of monsters and stored the
name of each one in an MO$ location. This line RaNDomly selects one of the
MOnsters and adds its name, plus a trailing blank space (“ ”) to WRD$. Each
time the subroutine at 2900 is performed, the contents of WRD$ are PRINTed
and cleared from WRD$. Each time WRDS$ is emptied, the story grows.

3500 First, the word ‘FROM’ and a trailing space (“ ”) are stored in WRDS$.
This word is added to the developing story. At the subroutine beginning at
line 2900, the contents of WRD$ (FROM) are added to the rapidly developing
story. Then, the HOme base of the MOnsters is added to WRD$, and a period
(“”) is also added. Once again WRDS$ is emptied (in the 2900 subroutine) and
the story sprouts another section.

3600 From the list of potential heroes, SOmeone will be RaNDomly selected
(FN R(SO)). A space (“ ") will follow SOmeone’s name, and then this material
will be added to the story.

3700 First, the words “TRIED TO” are added to the text. Next, one of the five
‘defense methods’ is randomly selected and added to WRD$ (at 3710, 3720,
3730, 3740, and 3750). Finally, the subroutine which begins at line 2900 adds
the ‘defense technique’ to the story.

3710 through 3750 These lines contain the five ‘defense techniques’.
3800 Two more words and a trailing space (BUT THEY) are added to the text.
Next, one of five responses to SOmeone’s ‘defense technique’ is RaNDomly

chosen and the text is once again supplemented.

3810 through 3850 Each line contains one of the five responses to a ‘defense
technique’.

3900 There are five ways to announce the changing fortunes of battle. One of
these five choices is randomly selected (FN R(5) GOTO....). The subroutine at

25

~

line 2900 again prevents right-hand margin overflow while adding the new
material to the story.

3910 through 3950 These lines contain the five ‘fortune-reversal lead-ins’
mentioned at line 3900.

4000 You were given an explanation of the “ON” statement in line 1050, but it
deserves reiteration. First, line 2005 DEFined the FuNction R(X) to be be equal
to a RaNDon INTeger between 1 and X. The number 5 is substituted for ‘X,
making R(5) yield a random integer between one and five. The “ON”

- statement will cause the program to execute one of the five given subroutines,
depending on the value of FN R(5). If the number generated is 3, then line
4000 reads, in effect, ON 3 GOSUB (the 3rd line-number) which is line... 4030.
After one of the five subroutines is performed, the program executes the
subroutine beginning at line 2900. Then RETURN completes the subroutine
initiated at line 3060. %

4010 through 4050 These five lines contain the different ‘attack methods’ that

SOmeone might employ. The information is stored in WRD$ until it is
PRINTed (by line 2900).

4100 A two word phrase, “SO THEY “, is stored in WRD$ for later addition to
the story. Next, the subroutine beginning at line 2900 is executed. This
subroutine not only PRINTs the contents of WRD$, but it prevents the
contents of WRD$ from being printed so that they breach the right margin.
After one of the five ‘attack results’ is added to WRDS$, the subroutine which
begins at line 2900 is executed. For all intents and purposes, the RETURN
statement at line 4100 completes the program.

4110 through 4150 These lines contain the five ‘results’ of the ‘attack method".

Even as you read these words some of the illustrious characters whose names
are stored in the data statements are slipping further into obscurity. Put in
your own selection of names. This program is really an easy one to change and
make your own. Change the data statements and print commands to your own
fiendish specifications. You can save the new version under a new name and
have both versions on diskette. Remember! What you change in the
computer’s memory does not change what is stored on the diskette unless you
save the new version and give it the same name as the old version. It is sound
practice to leave the original version unchanged on a different diskette and call
your version Sci-Fi V1, Sci-Fi V2, etc. Have fun changing things around. It's
the best way to learn.

26

10
11
12
13
14
15
16
20
30
40
20
1000
1001
1002
1010
1020

1030

1040

1990
2000
2001
2002
2005

2010
2011
2012
2013
2015

REM %33 % % % % 9 9 9 0 0 3 % % % % % % %

REM *¥* * %%
REM *®%¥ SCI-FI * %%
REM #%% * % %
REM %355 % % % % 9% % % % % % % % % % % %
REM
REM

GOSUB 1@00: REM INSTS
GOSUB Z2@ed: REM SETUP
GOSUB 3@00: REM PLAY!
END

REM *%% INSTS

TEXT : NORMAL : HOME
UTAB 3: HTAB 13: PRINT "%*%**
SCI-FI #x*x" '

UTAB 7: PRINT "THIS PROGRAM
WILL PRODUCE LOTS OF FUNNY
LITTLE SCIENCE-FICTION STORI
ES FOR YOUR READING PLEASURE

"
¢

PRINT : PRINT "YOU ARE GIVE
N THE CHANCE TO ENTER SOME
PERSONALLY RELEVANT INFORMAT
ION IN HOPESOF MAKING THE ST
ORIES MORE INDIVIDUAL."

UTAB 23: INPUT "HIT RETURN
WHEN READY TO CONTINUE : "3A
NS %

RETURN

REM *%% SETUP

DEF FN R(X)
1) # X) + 1

DIM S0%(15):50

DIM PL$(13):PL

DIM MO%(15):MO

DIM HO%(13):HO =

READ S0%: IF S0% < > "END"

THEN SO0 = S0 + 1:50%(S80) =
S0%: GOTO 2015

INT (RND (

L L

27

2016

2017

2018

2021
2025

2026
2030

2031
2035

2036
2100

2110

READ PL$: IF PL$% < > "END"
THEN PL = PL + 1:PL&(PL) =
PL$: GOTO 2016

READ MO%$: IF MO$ < > "END"
THEN MO = MO + 1:MO&(MO) =
MO$: GOTO 2017

READ HO%$: IF HO%$ < > "END"
THEN HO = HO + 1:HO$(HO) =
HO%: GOTO Z@18

DATA "ALEXANDER HAIG" ,"RON

ALD REAGAN" s"SUPER CHICKEN"
"FATHER GUIDO SARDUCCI"»"A L
ITTLE GIRL" »"AN INTERESTED O
NLOOKER" »"SUPERMAN"

DATA "END"

DATA "SYRACUSE" »"NEW YORK",
"EARTH" +"THE UNITED STATES"),
"YOUR TOWN" »"LOS ANGELES" »"W
ALLA-WALLA WASHINGTON" s"THE PR
ESIDENT" »"THE EASTERN COAST"

DATA END

DATA "LITTLE GREEN MEN","A

CROWD OF ANGRY PEASANTS BEA
RING TORCHES" »"BOOGEY MEN","
ALIENS" s"IN-LAWS" »"SPACE EGG
S" "FLYING GOOKIES" »"ZOMBIES
"2"RELIGIOUS FANATICS" »"ICKY

THINGS"

DATA "END"

DATA "VENUS" »"MARS" »"OUTER
SPACE" »"0UT OF OUR GALAXY" "
THE MOON":"THE FOURTH DIMENS
ION" »"THE NEGATIVE ZONE" :"A
TIME WARP" "THE STARS" »"PLUT
DII

DATA "END"
HOME : VUTAB 3: HTAB 13: PRINT
"#%% SCI-FI **%": UTAB 22Z2: PRINT

"PRESS RETURN AT ANY TIME."
UTAB 7: PRINT "TYPE IN UP T
0 5 NAMES OF PEOPLE THAT
WILL SAVE THE DAY : ": PRINT

28

2114
2115

2134
2135

2137

2149

2144
2145

2150
2900
2903

2910

LET CO = @

INPUT "===> "350%: IF S50% <«
="t THEN 80 = S50 + 1:50%(S
0) = 504:C0O0 = CO + 1: IF CO <

5 THEN 2115

HOME : VUTAB 3: HTAB 13: PRINT
"¥%% SCI-FI *#*%": UTAB 7

PRINT "TYPE IN UP TO 5 NAME
5 OF PLACES THAT WILL BE
ATTACKED ¢ ": PRINT

LET CO = @

INPUT "===»> "§PL%$: IF PL% <

"" THEN PL = PL + 1:PL#%(P

L) = PL$:CO = CO + 1: IF CO ¢
3 THEN 2125

HOME : VTAB 3: HTAB 13: PRINT
"i#% SCI-FI #%%": UTAB 7

PRINT "TYPE IN UP TO 5 NAME
S OF MONSTERS THAT WILL ATT

ACK : ": PRINT

LET CO = @

INPUT "===3 "iMO%: IF MO% <
> """ THEN MO = MO + 1:MO%$(M

0) = MO%:CO = CO + 1: IF CO <
5 THEN 2135

HOME : VUTAB 3: HTAB 13: PRINT
"#%% SCI-FI ***": UTAB 7

PRINT "TYPE IN UP TO 5 NAME
S OF PLACES THAT THEMONSTERS
COME FROM : ": PRINT

LET CO = @

INPUT "=== "jHO%: IF HO% <
> "" THEN HO = HO + 1:HO%$(H
0) = HO%$:CO = CO + 1: IF CO <

5 THEN 2145

RETURN

LET PT = 1

PRINT MID$ (WRD%$sPT,1)35: IF
MID% (WRD%$:PT,1) = " " AND

PEEK (3B6) > 3@ THEN PRINT

PT = PT + 1: IF PT < = LEN
(WRD%$) THEN 29@5

29

2990 RETURN

3000 :

3081 REM *%% PLAY

3002 :

3019 GOSUB 310@: REM TITLE

30153 GOSUB 3200: REM PLACE

3020 GOSUB 330@: REM ACTION

3025 GOSUB 340@: REM MONSTER

3039 GOSuUB 350@: REM PLACE

3035 GOSUB 36@0: REM SOMEONE

3049 GOSUB 370@: REM DEFEND

3045 GOSUB 380@: REM TOO TOUGH

305@ GOSUB 3900: REM FINALLY

3055 GOSUB 3600: REM SOMEONE

3060 GOSUB 4000: REM DEFEND

307¢ GOSUB 410@: REM THEY DIED

3073 :

3077 PRINT

3082 VTAB 23: INPUT "HIT RETURN
WHEN READY TO CONTINUE : "3iA
NS$

3085 GOTO 3210

3108 HOME : ON FN R(3) GOTO 311
®,3120,3130,3140,3150

3110 VUTAB 3: PRINT "*%% FLASH! F
LASH! FLASH! **%": UTAB 7: RETURN

3120 VUTAB 3: PRINT "#*%% BULLETIN
Pt %%%": UTAB 7: RETURN
313@ VYTAB 3: PRINT "#**% ALERT !!
I #*%": UTAB 7: RETURN
3140 VUTAB 3: PRINT "#**% SPECIAL
NEWS BULLETIN **%": UTAB 7: RETURN
3150 VTAB 3: PRINT "#*%% TO ALL C
ITIZENS #***": UTAB 7: RETURN

3200 WRD$ = PL&(FN R(PL)) + " "z
GOSUB 2900: RETURN

3300 ON FN R(3) GOSUB 3310.,3320
13330 +,3340,3350: GOSUB 2900:
RETURN

3310 WRD$ = "WAS ATTACKED BY ": RETURN

30

3320

3330

3340

WRD% = "WAS EATEN BY ": RETURN
WRD$ = "IS UNDER THE SPELL O

F ": RETURN

WRD$ = "IS5 BEING INVADED BY

": RETURN

WRD$ = "IS5 OVER-RUN BY ": RETURN
WRD$ = MO$(FN R(MO)) + " "3
GOSUB 290@: RETURN

WRD$ = "FROM ": GOSUB 2900:W

RD% = HO$(FN R(HD)) + ", "
GOSUB 2900: RETURN

WRD$ = S0%(FN R(S0)) + " ":
GOSUB 2900: RETURN

WRD$ = "TRIED TO ": GOSUB 29
@0: ON FN R(3) GOSUB 37103
7203730 :3740,3750: GOSUB 29
2@: RETURN

WRD$ = "KILL THEM ": RETURN

WRD$ = "FIGHT THEM ": RETURN
WRD$ = "HOLD UP A CROSS ": RETURN
WRD$ = "ATTACK AT DAWN ": RETURN
WRD$ = "SHOOT THEM ": RETURN
WRD$ = "BUT THEY ": GOSUB 29

@2: ON FN R(3) GOSUB 38103
820 .,3830,3840,3850: GOSUB 29
@@: RETURN

WRD® = "WERE TOO TOUGH. ": RETURN
WRD$ = "KEPT COMING. ": RETURN
WRD% = "YELLED AND LAUGHED.

"+ RETURN

WRD$ = "SCREAMED FOR MORE., "

: RETURN

WRD$ = "SHOT BACK. ": RETURN

31

3900

3910
3920
3930
3949
3950
4000
a010
4020
4030

4040

4110
4129

4130

4149

ON FN R(3) GOSUB 3910,3920
+ 3930 ,3940,3950: GOSUB 2900:
RETURN

WRD$ = "FINALLY,» ": RETURN
WRD$ = "LATERs ": RETURN
WrRD® = "THEN +.+ ": RETURN
WRD$ = "BUT THEN, ": RETURN
WRD$ = "AFTER: ": RETURN

ON FN R(3) GOSUB 4010,4020
2 4030 ,4040 ,4050: GOSUB 2900:
RETURN

WRD$ = "YELLED AT THEM: ": RETURN
WRD$ = "DROPPED WATER ON THE

Ms ": RETURN

WRD$ = "EXPOSED THEM TO MEAS

LES ": RETURN

WRD% = “NUKED THEM: ": RETURN
WRD$¢ = "SHOWED THEM RERUNS O
F I LOVE LUCY,» ": RETURN

WRrRD$ = "S0 THEY ": GOSUB 290

@: ON FN R(3) GOSUB 4110.41
20:4130.:4140,4150: GOSUB 290
@: RETURN

WRD$ = "DIED.": RETURN

WRD% “"TURNED INTO LITTLE B
ROWN LUMPS.": RETURN

WRD$ = "PASSED AMWAY.": RETURN
WRD$ = "LEFT FOR HOME.": RETURN
WRD$ = "UANISHED INTO NOTHIN

GNESS.": RETURN

32

This game is designed to compel the user to define any object that is chosen.
This process ‘teaches’ the computer a definition of up to fifty objects.
Although each run starts with the same elementary knowledge, the user adds
the information which makes it harder and harder to stump the computer. To
see the “setup,” list -2030. The only two objects which the computer “knows”
are a car and a house. Line 2015 specifies that RA$(1) =car, and

WA$(1) =house. Line 2010 gives each of these variables fifty locations, so you
can play for a long time. What the DIM statement does is to DIMension
memory so that BA$, WA$, etc. will be able to contain up to fifty separate
values. In other words, BA$(1), BA$(2), BA$(3)BA$(50) each contain a
distinct value. This program demonstrates writing to array tables and
searching the arrays for matching strings. You could use the routines in this
program to write educational programs and tests.

33

10
11
12
13
14
15
16
20
30
40
50
1000
1001
1002
1010
1020

1030

1040
1041

1045
1046

REM & HEEXFXRFXRXXRFFHRRHHR
REM %#%% ¥* %%
REM %% APPLE LEARNER %%
REM %*%% * % %
REM %% %% %X ¥HHFHHEEFHH%*¥
REM
REM
GOSUB 100@: REM INSTS
GOSuUB 2000: REM SETUP
GOSuUB 300@d: REM PLAY!
END
REM ##% INSTS
TEXT : HOME : NORMAL
UTAB 3: HTAB 9: PRINT "*%*%
APPLE LEARNER #*%x"
UTAB 7: PRINT "THIS IS A GA

ME THAT HAS THE ABILITY TO

LEARN, IT WILL ATTEMPT TO G
UESS THE NAME OF AN OBJEC
T THAT YOU PICK AT RAND
oM. "

PRINT

PRINT "WHENEVER YOU STUMP T

HE COMPUTER YOU AREASKED AB

OuT THE OBJECT YOU SELECTED.
BYCOMPILING THIS INFORMATI

ONs THE COMPUTER‘LEARNS’."
PRINT = PRINT '
PRINT "ENTER

U ARE DONE.
UTAB 23
INPUT "HIT RETURN WHEN READ

Y TO CONTINUE "IANSS
RETURN

REM

‘STOP

WHEN YO

*¥%% SETUP

DIM QU$(S@) sRI(3D) sWR(50) sR
AH(S0) sWAS(S0)

QUs (1) "DOES IT MOVE ALONG
THE GROUND":RI(1) D:WR(1)
@

34

2030
2990
3000
3001
3002
3005
3010

3015

3020

3030
3033
3036

3040

3100

3105
3200

3205

3300
3310

3312

3315

RA$(1) = "CAR":WA$(1) = "HOU
SEII

FR = 2

RETURN

REM *%% PLAY

LI = 1
HOME : VUTAB 3: HTAB 9: PRINT
"#¥%% APPLE LEARNER #*%": UTAB

PRINT "I KNOW OF "FR" OBJEC
TS +++"2 PRINT
PRINT ¢ PRINT QU$(LI)S: INPUT

P "3ANS$:ANSs = LEFT$ (AN
S%,1)

IF LEFT$ (ANS$%,1) = "Y" THEN
3100

IF LEFT$ (ANS%:1) = "N" THEN
3200

IF LEFT$ (ANS#%:1) = "§" THEN
TEXT : END

PRINT "PLEASE ANSWER ‘YES'
OR 'NO’+++": PRINT : GOTO 30
20

IF RICLI) THEN LI = RI(LI):

GOTO 3020
GUs = RA$(LI): GOTO 3300

IF WR(LI) THEN LI = MWR(LI):

GOTO 3020
GUs = WAS(LI): GOTO 3300

PRINT "IS IT A "iGU®;

INPUT " 7 "3TA$:TA$ = LEFTS
(TA%$,1): IF TA$ = "Y" THEN PRINT
: PRINT "I GOT IT !ti"§ CHR%

(7)5 CHR$ (7)3 CHR% (7): FOR
PA = 1 TO 10@@: NEXT PA: GOTO
3005

IF TA% = "§" THEN TEXT : END

PRINT = PRINT : INPUT "WHAT
WAS THE OBJECT?" iNA%

35

3317 IF FR = 31 THEN PRINT "I C
AN‘T REMEMBER THAT ONE. MY
MEMORY SEEMS TO BE FULL...
": FOR PA = 1 TO 1000: NEXT
PA: GOTO 3005

3320 PRINT : PRINT "WHAT IS A QU
ESTION THAT I COULD USE TO
TELL THE DIFFERENCE BETWEEN
": PRINT GU$%" AND "NA$3s: INPUT
R TIOUs

3325 PRINT "FOR "NA$" THE ANSHER

IS WHAT"3: INPUT " 7 "3YN$:
¥YN$ = LEFT$ (YN$:1): IF YN®
£ % "Y"™ AND YN$ < > "N
" THEN 3325

3340 IF AN$ = "Y" THEN RI(LI)
FR:LI = FR:FR = FR + 1

3341 IF AN$ = "N" THEN WR(LI)
FR:LI = FR:FR = FR + 1

3345 QU%(LI) = QU%

i
AN

335@ IF YN$ = "Y" THEN RA$(LI) =
NAs:WAS(LI) = GU%
3351 IF ¥YN$ = "N" THEN RA$(LI) =
GUs:WAK(LI) = NA% /

3353 GOTO 3005

36

This program is designed to interpret input, and from it, graph the user’s
biorhythms. You can accept the output to be as valid as you please, but don’t
expect the results to be testimony. Biorhythms, though fascinating, are still
considered to be unscientific. There are several features of the program worth
noting even if it won't predict the future:

Lines 2010 to 2025 set up a simple calendar printing routine. A few more lines
and you could add leap years to it.

Line 3020 asks for a date and tells you exactly how to format the response.

Lines 3025-3028 ‘error check’ the input. Error checking is a vital part of so-
called user friendly programs.

Line 3140-3148 position the P, E and C characters into beautiful sine curves.
Even if you have forgotten all your high school math you can try out the trig
functions by plotting points to give a graphic representation of the function.

Did you recognize 6.28318 as 2Pi?

Running BIORHYTHM in the TRACE mode will show you very dramatically
the FOR-NEXT loops in 3152 and 3208 that create the patterns.

The program uses complicated string functions and nested loops, so don't feel
bad if it all looks like Relativity Theory. You can write a lot of programs which
never get this complex.

_/

37

10
11
12
13
14
135
16
18
20
30
40
42
a5
46

a7

T T T W W
NEC RO YARS

LY
aa]

70

1000
1001
1002
1010
1020

1030

REM 36 3 3 3 I 3 I I I IR

REM #%% * %%
REM #%% BIORHYTHM * %%
REM #%*#% * % *
REM #%¥¥¥XXHFHXREFHXRRXHE
REM

REM

GOsuB 45

GOSuUB 1000: REM INSTS

GOSuB Z2000: REM SETUP

GOSUB 300@: REM PLAY!

END

HOME : VTAB 4

PRINT "A GRAPH OF BIORHYTHMS
IS COMPOSED OF THELETTERS C»
E: I+ AND P. EACH OF THESE

Is"s
PRINT " A REPRESENTATION OF O
NE OF YOUR "y

PRINT "MEASURABLE BIORHYTHMS,

FOR I = 1 T0O 4: PRINT : NEXT
: HTAB 6

PRINT "I = INTELLECTUAL STATE
PRINT : HTAB 6

PRINT "E = EMOTIONAL STATE"
PRINT : HTAB 6

PRINT "P = PHYSICAL STATE"
PRINT : HTAB 6

PRINT "C = THE CROSSOVER POIN
TII

FOR I = 1 TO B6: PRINT : NEXT
: INPUT "PRESS RETURN WHEN R
EADY TO CONTINUE : "3ANS

RETURN

REM *#%% INSTS

TEXT : NORMAL : HOME

UTAB 3: HTAB 11: PRINT "#**%
BIORHYTHM **x"

UTAB 7

38

1031

1040

1042

1045

1250
1051

1060

1065

2025

2990
3000
3001
3002
3010

PRINT "THIS PROGRAM WILL GR
APH OUT YOUR UNIQUE BIORHYTH
MIC CYCLES: EITHER ON THE SC
REENOR TO A PRINTER. "

YTAB 16: PRINT "SHOULD I OU
TPUT TO:

PRINT : PRINT " S)CR
EEN
-0OR-

PRINT * PYRINTER

UTAB 22

INPUT "WHICH DO YOU WANT (S
/P)Y 7 "iANS%:ANS$ = LEFT$ (
ANS$+1): IF ANSs% < > "B" AND
ANS$ < > "P" THEN 10350

IF ANS% = "8" THEN RETURN
UTAB 2ZZ: CALL - 938: INPUT
“IN WHICH SLOT IS YOUR PRINT
ER?"3$SLOT$:5L0T = VAL (S5LOT
$): IF SLOT < 1 OR SLOT > 7 OR
SLOT < » INT (SLOT) THEN 1
@65

RETURN
REM *%% SETUP
DIM AC12)+B(12),T(3)+A$(Z1)

Cé = "JANFEBMARAPRMAYJUNJULA
UGSEPOCTNOVDEC™"

FOR I = 1 TO 12: READ A(I):
NEXT : DATA ©,31,59,:,90,:120,
151,181,212,243,273,304,334
FOR I = 1 TO 12: READ B(I):
NEXT : DATA 31:28,31:30:31;
30:31,31,30,31,30,31

RETURN

REM *%% PLAY

HOME : UTAB 3: HTAB 11: PRINT
"s%% BIORHYTHM #%%"

39

3015

3020

3025

3027

3028

3030

3033
3036
3037
3038

3040

3045

3050

INPUT "WHAT IS YOUR NAME? "
iNG

PRINT : PRINT "WHAT IS YOUR

BIRTHDATE? ": INPUT "MM,DD,
YYYY) "3SMsD Y

IFM< 1 ORM > 12 THEN PRINT
"INCORRECT MONTH":ER = 1

IF D< 1 0ORD > 31 THEN PRINT
"INCORRECT DAY":ER = 1

IF ¥ < 1800 OR Y > 1988 THEN

PRINT "INCORRECT YEAR":ER =
1

IF ER THEN ER = @: GOTO 302
@

PRINT : PRINT "WHAT IS THE
START DATE?": INPUT "MM,DD .Y
YYY "iM1,D@ Y1

IF M1 < 1 OR M1 » 12 THEN PRINT
"INCORRECT MONTH":ER = 1

IF D@ < 1 OR D@ > 31 THEN PRINT
"INCORRECT DAY":ER = 1

IF Y1 < 190@ THEN PRINT "I
NCORRECT YEAR":ER = 1

IF ER THEN ER = @: GOTO 303
@

PRINT : INPUT "HOW MANY DAY
87 "32: IF 2 < 1 OR Z < » INT
(2) THEN 3040
W = DO:W1l = Ml:W2 = Y1:W3 =

=
“

J = A(M) + D:D1 = 365 - J +
((J <« = B@) AND (Y / 4 = INT
(Y /7 4))):D2 = 365 * (Y1 - (
Y + 1)):E = @: FOR T = Y + 1

TO ¥1 - 1:E = E + (T / 4 =
INT (T /7 4)): NEXT T
D3 = A(M1) + D@:D3 = D3 + ((

Y / 4 = INT (Y / 4)) AND (D
3 » = 60)):D4 = D1 + D2 + D
3 + E

IF D4 <« @ THEN PRINT "STAR
T DATE BEFORE BIRTH DATE": GOTO
3030

40

3104

3108

3112

3116

3117

3118

3120

3124

3128

3132

3136

3140

3144

3148

3156
3160

3164
3168

3172
3180
3188

P1 INT
3
El
8
Ci
3

IF ANG% tp
(4)"PR#"SLOT:
) L] BEN "

PRINT TAB(
YCLES": PRINT
FOR ---": PRIN
17 LEN (N%)

PRINT TAB(

* M 23"

D4

D4 INT

D4 INT

e
£

~
<

PRINT
B)II |I\|11Il
@) (+)"

FOR T 1 T0
P2 P1L + T

/ 23) % 23
E2 EL + T

/ 2B) * 28
c2 Cit + T

/ 33) % 33
P3 = INT (11,
(P2 * 6.28318
E3 INT (11,
(E2 * 6.28318
C3 INT (11,
(C2 # 6.28318

FOR I = 1 TO
s NEXT
A (P3) “pr

IF A%$(E3) <
0
A$(E3) nE™M

IF A%$(C3) <
8

MID$ (

A$(C3) = "C":
AS(E3) = "x"g
AB(C3) = "%x":

(D4 / 23) * 2
(D4 / 28) * 2
(D4 / 33) * 3
THEN PRINT
PRINT CHR%$ (9

Z)"BIORHYTHM C

TAB(25)"ww-
T TAaAB(22 + (
) / Z2)N%

5)3 MID$% (C%$.:3
D"y "Ys: PRINT
Ce:3 ¥ M1 - 2,

(-) (
P

INT ((P1 + T)

INT ((E1 + T)

INT ((C1 + T
S + 10 # SIN
/ 23))

S + 10 * SIN
/ 28))

S + 10 ®# SIN
/ 33))
21:A%(1) = ¢
» " " THEN 318
» " " THEN 318
GOTO 3192

GOTO 3168

GOTO 3192

CHR%

41

3192 IF A%(11) = " " THEN A$(11)
= 1] I "

3186 IF D® = 1 THEN PRINT MID$%
(C»3 * M1 - 2,3)" "i: GOTO

3208

3198 PRINT " "3

3208 PRINT RIGHT® (" "+ GTR%
(D) 2" "j: FOR
I = 1 TO 21: PRINT A%(I)3: NEXT
: PRINT

3212 IF Y1 - (C INT (Y1 / 4)) %

4) = @ THEN B(2) = 289

3224 DO = D@ + 1: IF D@ » B(M1) THEN
D@ = 1:M1 = M1 + 1

3244 IF M1 > 12 THEN M1 = 1:¥1 =
Yi + 1

3268 NEXT T

330@ IF ANS$ = "P" THEN PRINT CHR$%
(4)"PR#Q"

3990 RETURN

42

Connect Five

This classic game requires that you connect five squares either vertically,
horizontally, or diagonally. Though not much of a challenge, the game is good
for your ego. The graphics are fairly basic, so let’s take a closer look. First,
type: LIST-2025. Experiment with the color, the line length and location, and
the FOR statement. After you are done analyzing those lines, type: LIST -3050.
Most noteworthy are lines 3010-3021. Line 3010 asks you to input the desired
column NUMBER, but the variable (ANS$) is for numbers and characters. Any
variable that ends with a dollar-sign ($) is called a string and is not capable of
having any mathematical functions performed upon it. The reason the variable
in 3010 is a string variable is that the person choosing the column number
might accidentally hit a letter instead of a number. If the variable in 3010 was
ANS, and an I were input in place of 1, the program would ‘crash’. Each
character has a corresponding numeric value, so a letter can be redefined as a
numeric. Line 3020 converts the string ANS$ to the numeric ANS. Line 3021
then makes mathematical comparisons based upon the input. You might want

to experiment with the VAL command to see how computers alphabetize lists
of words.

43

i@ REM T E T TR T TSRS R

11 REM #%% * % %
12 REM *%% CONNECT FIVE #*#%*
13 REM #*%% * % %
14 REM ¥ ¥EXEFEXREXXERREE%%%%
15 REM
16 REM

2 GOSUB 1000: REM INSTS
30 GOSUB 2000: REM SETUP
49 GOSUB 3000: REM PLAY!
50 GOSUB 4000: REM IEND!
60 END
1000 :
1801 REM *%% INSTS
1002 =
101@ TEXT : NORMAL : HOME
1020 VYTAB 3: HTAB 1@: PRINT "**#%
CONNECT FIVE %*x**"
1030 VTAB 7: PRINT "THE OBJECT O
F THE GAME IS TO GET FIVE OF
YOUR PIECES IN A ROWs EITHER
VERTICALLY OR HORIZONTALLY,"
1835 PRINT
1049 PRINT "WHEN IT IS YOUR TURN
TO MOVEs ENTER THE NUMBER O
F THE COLUMN YOU WISH TO DRO
P YOUR PIECE INTO. "
18045 PRINT
185@ PRINT "AFTER YOU MOVE, I MWI

LL TAKE A TURN. THE FIRS
T ONE TO CONNECT FIVE IS THE
WINNER., "

1060 VUTAB 22: INPUT "PRESS RETUR
N WHEN READY TO CONTINUE : "

FANSS
1990 RETURN
2000 :
2001 REM *%% SETUP
2002
2010 GR

2011 COLOR= @

2012 FOR I = © TO 35
2013 HLIN 2,35 AT 1
2014 NEXT

44

2013
2016
2017

2018
2020
2021
2022
2023
2024

L

20235
2030

2040

2050

2900

2910

2990
3000
3001
3002
3010

3020
3021

3030

COLOR= 13

FOR I = @ TO 35 STEP 3

HLIN 0,35 AT I: VULIN @,35 AT

I

NEXT 1

COLOR= 6

ULIN 35,38 AT 3

HLIN 2.4 AT 39

PLOT 2,36

HLIN 7,89 AT 35: HLIN 7.9 AT
37: HLIN 7,9 AT 39

PLOT 9.,36: PLOT 7.38

HLIN 12,14 AT 35: HLIN 12,1
4 AT 37: HLIN 12,14 AT 38: PLOT
14,36: PLOT 14,38: HLIN 17,1
8 AT 37: VULIN 35,39 AT 19: VULIN

35,36 AT 17

HLIN 22,24 AT 35: HLIN 22,2
4 AT 37: HLIN 22,24 AT 38: PLOT
22+»36: PLOT 24,38: HLIN 2742
8 AT 35: HLIN 27,28 AT 37: HLIN
27+28 AT 39

PLOT 27.:38: PLOT 29,38: PLOT
27+36: HLIN 32,34 AT 35: PLOT
34,36: VLIN 37.:39 AT 33

DEF FN C(X) = (X - 1) * 3 +
1

DEF FN P(X) = (X - 1) * 3 +
9

RETURN

REM *%# PLAY

HOME :PL = 1: INPUT "YOUR M
OVE (COLUMN 1-7) : "3ANS%

ANS = UAL (ANSS$)

IF ANS < 1 OR ANS > 7 DR AN
S < INT (ANS) THEN HOME
¢t PRINT "PLEASE SELECT A NUM
BER FROM 1 TO 7 = ": FOR A =
1 TO 100@: NEXT A: GOTOD 3010
AX = FN C(ANS)

45

3040

3053
3060

3063
3070

3080
3090

3100

3183
3110
3120

3130

3135
3140
3150

3160

3170
4009
001
da002

IF SCRN(AX»1) < » @ THEN
HOME PRINT "THAT COLUMN I
8 FULL++s "2 FOR A = 1 TO 10
@@: NEXT A: GOTO 3010

FOR J = 1 TO 7: COLOR= FN
P(PL)Y:JX = FN C(J): FOR K =
JX TO JX + 3: HLIN AXsAX + 3
AT K: NEXT K

IF 4 = 7 THEN 3080
LX = FN C(J + 1): IF SCRN(
AX LX) < 12 THEN J = 7: GOTO
3080

COLOR=0

FOR K = JX TO JX + 3: HLIN
AXsAX + 3 AT K: NEXT K

NEXT J

FOR I = 1 TO 7: FOR J = 1 TO
3: FOR K = J T0 J + 4:IX = FN
C(I):KkX = FN C(K)

IF SCRN(IX:K¥X) < FN P
(PL) THEN K = J + 4: NEXT K:
GOTO 3110

NEXT K: RETURN

NEXT J»l

FOR J =1 T0 7: FOR I = 1 TO
3: FOR K = I TO I + 4:KX = FN
C(K)Y:dX = FN C(J)

IF SCRN(C KX»JdX) < > FN P
(PL) THEN K = I + 4: NEXT K:
GOTO 3140

NEXT K: RETURN

NEXT I.J

IF PL = 2 THEN PL = 1: GOTO
3010
PL = 2:ANS = INT (RND (1) =*
7) + 1:AX = FN C(ANS): IF SCRN(
AX1) < » 12 THEN 3160

GOTO 3050

REM #*#%% ALL DONE

46

-

401@ HOME : PRINT : PRINT "THE G
AME IS OVER !!!": PRINT "THE
WINNER IS ++0 "1

4029 IF PL = 1 THEN PRINT "YOU
tii": RETURN

493® PRINT "ME !!!": RETURN

47

)

This is definitely a thinking man’s game. You are given clues in an attempt to
guess a three-number puzzle. Load the program. FN R(10) generates a random
integer between 0 and 9. How and why will be discussed elsewhere in the
book, for now, just accept that this is true. N1 is any digit between 0 and 9. N2
is any digit between 0 and 9 exept N2 cannot equal N1. N3 is also a number
between 0 and 9. N3 cannot be equal to N2 or N1. The result is that the three-
digit number represented by N1/N2/N3 will be a random three-digit number
comprised of three different digits. Lines 3035-3037 separate your single three-
digit guess into three separate guesses (G1, G2, and G3). Here’s how. When
any number is converted to an integer, the portion of the number which is to
the right of the decimal point is truncated (cut off). Here are a few examples:
INT 3.4 is 3, INT 9.989 is 9, INT 562.3 is 562, INT 0.3 is 0. Taking line 3035,
assume that the guess was 567. 567 divided by 100 is 5.67. When converted to
an INTeger, 5.67 becomes 5 (G1=5). Line 3036 takes 567, subtracts (5
multiplied by 100), divides the result (67) by 10, and converts 6.7 into the
INTeger. Now G1=5 and G2=6. Lastly, 3037 takes 567 (ANS) and sutracts
from it (5 (G1) times 100 plus 6 (G2) times 10) or 560. The result (567 - 560) is
now stored in G3. So now G1=5, G2=6, and G3=7. Statistically, even when
you are unlucky, the solution can be derived in no more than seven guesses.
You've been challenged, now go to it!

49

10 REM #¥#¥FXFFFXFXEREXEEE®

11 REM *%x * % ¥
12 REM #x* DIGITS * % %
13 REM #%% * % %
14 REM #%%%¥%%%%%%HHFH%%%%%K%
15 REM
16 REM

20 GOSUB 1000: REM INSTS
39 GOSUB 2000: REM SETUP
49 GOSUB 3@000: REM PLAY!
59 GOSUB 4000: REM 'END!

@ END

1000 :

1901 REM *%* INSTS
1002

101@ TEXT : NORMAL : HOME
18020 VTAB 2: HTAB 13: PRINT "#%%
DIGITS #*%#"
183@ VTAB 5
1031 PRINT "I WILL THINK OF A NU
MBER BETWEEN @12 AND8S87. EA
CH DIGIT IN THE NUMBER WILL
BE DIFFERENT FROM THE OTHER
TWO."
1035 PRINT
104@ PRINT "THE OBJECT OF THE GA
ME IS TO GUESS THE SOLUTION
IN AS FEW TRIES AS POSSIBLE
185@ VYTAB 23: INPUT "HIT RETURN
WHEN READY TO CONTINUE : "3A
NS $
106@¢ HOME : UTAB 2: HTAB 13: PRINT
"#¥%% DIGITS *%*%": UTAB 5
107@ PRINT "AFTER EACH GUESS, I
WILL PRINT OUT A HINT LIN
E AS FOLLOWS ¢ "
1873 PRINT
108@ PRINT ":*FOR EACH DIGIT CORR
ECT AND IN THE CORRECT
POSITION: I WILL PRINT AN ‘X

7 L]
¢

10853 PRINT

50

1090

1095
1100

1123
1110

1113
1120

1130
1140
1143
1150

1160

1165
1170

1171
1175

1176
1180

1185

1190

1195

1200

PRINT ":*FOR EACH DIGIT CORR
ECT BUT NOT IN THE CORRECT
POSITION, I WILL PRINT AN ‘O

PRINT

PRINT ">FOR EACH TOTALLY IN
CORRECT DIGIT, I WILL PRI
NT A I_I’ n

PRINT

PRINT "PLAY WILL CONTINUE U
NTIL YOU GUESS THE NUMBER.

TO QUIT EARLY s SIMPLY HIT T
HE RETURN KEY FOR YOUR GUES
S'Il

UTAB 23

INPUT "HIT RETURN WHEN READ

Y TO CONTINUE : "3ANSS

ADY TO CONTINUE

"3ANSS$

HOME : VUTAB G
PRINT "HERE IS A TABLE TO H
ELP YOU UNDERSTAND THE INST
RUCTIONS."
PRINT : PRINT
PRINT "ANSWER GUESS
HINT LINE *
PRINT "--ccmmmmm e m e e e e
PRINT
PRINT " @65 703
0--
PRINT
PRINT " 3562 463
¥
PRINT
PRINT " 918 890
00-": PRINT
PRINT " 390 305
KO-": PRINT
PRINT " 271 721
X00": PRINT
PRINT " 425 780
---"2 PRINT
INPUT "PRESS RETURN WHEN RE

51

199@¢ RETURN

2000 :

2001 REM *%% SETUP

2002 =

201® DEF FN R(X) = INT (RND (
1) * X)

2020 N1 = FN RC1@)

2021 N2 = FN R(1@): IF NZ = N1 THEN
2021

2022 N3 = FN R(1@): IF N3 = N1 OR

: N3 = NZ THEN 2@22

2990 RETURN

3000 :

30@1 REM. #*%*% PLAY

3002 :

301@ HOME : VUTAB 3: HTAB 13: PRINT
"x% DIGITS #%*%": UTAB 7
3020 PRINT "OKAY, I'VE GOT A NUM
BER.+..": PRINT
303@ INPUT "WHAT IS YOUR GUESS?
"$ANS%: IF ANS% = "" THEN RETURN
3031 IF LEN (ANS$) < > 3 THEN
PRINT “TYPE ONLY THREE DIGI
TS PLEASE": GOTO 3030
3032 ANS = VAL (ANS%$): IF ANS <
@ OR ANS > 998 THEN PRINT "
TYPE ONLY THREE DIGITS PLEAS
E": GOTO 3030

3035 G1 = INT (ANS / 100)

3036 G2 = INT ((ANS - G1 * 1@@) /
12) :

3037 G3 = ANS - (Gl * 100 + GZ =*
1)

3048 IF Gl = GZ2 OR G1 = G3 OR G2
= G3 THEN PRINT "TYPE THRE
E DIFFERENT DIGITS PLEASE.":
GOTO 3030
3050 CP = @:CD = @:MI = 0
3051 IF G1 = N1 THEN CP = CP + 1

3052 IF GZ = NZ THEN CP

CP + 1

3053 IF G3 N3 THEN CP CP + 1

52

30735
3080
4000
ae01
4002
4010

4013

4020

4999

IF GI = N2 OR G1 = N3 THEN
CD = CD + 1

IF G2 = N1 OR GZ = N3 THEN
CO = CD + 1

IF G3 = N1 OR G3 = NZ THEN

CD = CD + 1
MI = 3 - CP - CD
PRINT "FOR YOUR GUESS OF "G
15G235G3" s I HINT "3
IF CP > @ THEN FOR I =1 TO
CP: PRINT "X"3: NEXT
IF CD » @ THEN FOR I
CD: PRINT "O"3: NEXT
IF MI > @ THEN FOR I = 1 TO
MI: PRINT "-"35: NEXT
PRINT : PRINT :NG = NG + 1:
IF CP = 3 THEN RETURN
GOTO 3030

1 1O

REM *%% END

PRINT "THE GAME IS OVER 4.
"1 PRINT

IF CP = 3 THEN PRINT "YOU
GUESSED IT IN ONLY "NG" TRIE
S ! L1}

IF CP < 3 THEN PRINT "THE
CORRECT ANSHWER WAS"™ N13iNZ2iN3
RETURN

53

——

‘@aﬁg—?‘%;@% e il

To play this game, you should have paper and pencil. You travel through an
unseen maze of caverns searching for the Grue. As any good spelunker will
tell you, drawing a map will prevent you from making the same mistakes over
and over again. In other words, draw a map as you go along. There are no
color graphics used in this program, but there are some other interesting
features. You may ask, “How come I get different responses each time I run
the program?” and here’s why. Lines 2100 through 2130 assign certain
variables a RANDOM value. Beginning at 3020, this becomes relevant. One of
four messages is printed. Which one it is, depends on the RaNDom values of
the four variables (EX, P1, B1, GU). Line 3026 reveals that on each move you
have a one in fifteen chance of experiencing an earthquake. To paraphrase line
3026: if a RaNDom INTeger between 0 and 14 happens to be equal to 4, then
PRINT (BELL$ causes the computer to emit a ringing sound) <<<
EARTHQUAKE >>>. Line 3030 really begins each turn. As you go through
the program, you will note that the execution of most of the lines depends,
either directly or indirectly, on the value of a randomly generated integer.

-~ _/

55

10
11
12
13
14
15
16

30
a0
o0
GO
1000
1001
1002
1010
1020

1030

1240

1060

1070

REM 3 ¥ 3 ¥ I ¥ I I I 3 I KRR

REM %% * % %
REM %%*% CRUE STEW %%
REM #%% ¥* % %
REM %9996 36 36 % 9% % % 3 96 5 % % 5 9 3 % %
REM
REM

GOsSUB 1000: REM INSTS
GOSUB Z200@: REM SETUP
GOSUB 300@: REM PLAY!
GOSuUB 4e0@: REM !END!
END

REM *%% INSTS

TEXT : NORMAL : HOME
UTAB 3: HTAB 12: PRINT "#**
GRUE STEW *x**"

UTAB 7: PRINT "IN THIS GAME
» YOU ARE A BRAVE HUNTER.
YOU ARE ALSO VERY HUNGRY. 8
0, YOU DECIDE TO GO ‘GR
UE’ HUNTING. A GRUE: ASEVER
YONE KNOWS: IS THE KEY INGRE
DIENT INGRUE STEW."

PRINT : PRINT "YOU ARE GOIN
G TO ENTER A SERIES OF
UNDERGROUND CAVESs IN SEARCH

OF THE STEWBASE: THE GRUE."

PRINT = PRINT "IF YOU CAN B
AG A GRUEs AND GET OUT OF
THE CAVES, THEN YOU WILL GET

YOUR STEW (AND WIN THE GAM
Et)."

UTAB 23: INPUT "HIT RETURN
WHEN READY TO CONTINUE : "3A
NG %

HOME : UTAB 3: HTAB 12: PRINT
"#%% GRUE STEW *#%x": UTAB 7

56

1080

1290

1093

1100

1120

1130

1140

1160

1170

PRINT "ONCE IN THE MAZE., YO
U CAN EITHER MOVE TO A DIF
FERENT CAVERN OR SHOOT AN AR
ROW INTO AN ADJOINING CAVE
IN HOPES OF HITTING A FE
rROCIOUS GRUE. "

PRINT : PRINT "I WILL ASK:
MOVE OR SHOOT?. AND YOU MUST
REPLY WITH ‘M’ FOR MOVE OR “
5 FOR SHOOT . "

PRINT : PRINT "IF YOU DECID
E TO MOVE, YOU CAN DO S0 IN
ANY OF THE FOUR COMPASS DIRE
CTIONS. WHENASKED WHICH MWAY

ENTER ‘N’ FOR NORTH -
FOR SOUTH: ‘W’ FOR WEST:s OR
‘E’ FOR EAST."

UTAB 23: INPUT "HIT RETURN
WHEN READY TO CONTINUE : "3A
NS$

HOME : UTAB 3: HTAB 12: PRINT

"¥%% GRUE STEW #**x": UTAB 7
PRINT "IF YOU DECIDE TO SHO
0T, YOU WILL BE ASKED: S

HOOT WHICH WAY?, AND YOU MUS
T REPLY: ‘N’ FOR NORTH, ‘S
’ FOR SOUTH, ‘E'FOR EASTs ‘M
" FOR WEST."

PRINT : PRINT "IF YOU HIT T
HE GRUE: YOU WILL BE TOLD»
AND YOU MUST TRY TO EXIT THE

CAVES."

PRINT : PRINT "BUT...THERE
ARE OTHER THINGS IN THE
CAVES. THERE ARE GIANT BATS

THAT WILL PICK YOU UP AND
DROP YOU ELSEWHERE."

UTAB 23: INPUT "HIT RETURN
WHEN READY TO CONTINUE : "3A
NS$

HOME : UTAB 3: HTAB 12: PRINT
"#%% GRUE STEW #*#%%": YTAB 7

57

1180

1190

1200

1990
2000
2001
2002
2003
2010
2013

PRINT "THERE ARE BOTTOMLESS

PITS. IF YOU FALL INTO ONE

OF THESE YOU'LL NEVER GET O
utie

PRINT : PRINT "OF COURSE TH
ERE IS THE GRUE HIMSELF.
THOUGH NOT AN AGGRESSIVE CRE
ATURE » HE WILL EAT YOU IF
YOou COME TOO CLOSE."

PRINT : PRINT "AND THERE AR
E EARTHOQUAKES THAT MOVE
THINGS AROUND IN THE CAVES (
BATS, PITSs THE GRUE.s AND TH
E EXIT!)."

UTAB 23: INPUT "HIT RETURN
WHEN READY TO CONTINUE : "3A
NG%$

RETURN

REM *%% SETUP

BELL$Y = CHR$ (7)

DIM RO%(20) »TR(Z2@+4)

FOR I = 1 TO 20: READ RO%$(I
Y NEXT 1

DATA YOU ARE IN A SMALL
ROOM WITH ROCKS AND DEBRIS
SCATTERED EVERYWHERE.

DATA DUCK YOUR HEAD IN
HEREF AS LARGE ROCK STALA
CTITES HANG FROM THE CEILING

+

DATA THE ROOM HERE SLOP

ES DOWNWARD.

DATA THIS ROOM IS VERY §
MALLS BUT I THINK WE CAN MAK
E IT THROUGH OK.

DATA THIS IS A VERY LAR
GE ROOM WITH A LARGE BOULDE
R IN THE CENTER OF IT.

DATA THIS IS THE CENTER OF

A NARROW PASSAGE THAT CONN
ECTS OTHER ROOMS.

58

2026 DATA THIS PASSAGE IS VERY
LOW3: BUT IF ME CRAWL WE
CAN MAKE IT.

2027. DATA THIS IS A VERY DIRTY
rROOM3 IT HAS BEEN PARTIALL
Y FILLED IN BY THE LAST EART
H- QUAKE THAT HIT.

2028 DATA THIS ROOM IS ABOUT
AVERAGE SIZES BUT IS FILLED
WITH A PUNGENT AROMA THAT I
S VERYNAUSEATING.,

2029 DATA YOU ARE IN A SMALL PA

SSAGEWAY .

203@ DATA YOU ARE IN A SMALL PA
SSAGEMWAY .

2031 DATA YOU ARE IN A SMALL PA
SSAGEWAY .

2032 DATA YOU ARE IN A SMALL PA
SSAGEWAY .

2033 DATA YOU ARE IN A SMALL PA
SSAGEMWAY .

2034 DATA YOU ARE IN A SMALL PA
SSAGEWAY .

2035 DATA A SMALL HOLE IN TH
E CEILING LETS LIGHT FROM O
UTSIDE THROUGH ... BUT YOU W

OULD NEVER FIT THROUGH IT.
2036 DATA SOMEONE HAS LEFT A L
IGHTED TORCH ON THE WALL AND
IT ILLUMINATES YOUR PASSAGE
2037 DATA A RIVULET OF WATER SL
OWLY TRICKLES FROM A HOLE IN
THE WALL.
2038 DATA A SMALL HOLE TO YOUR
LEFT ATTRACTS YOUR ATTENTION
} BUT IT IS TOO SMALL TO BE
OF ANY CONCERN.,
2039 DATA YOU ARE IN A LOW
DEPRESSION IN THE CENTE
R OF A MEDIUM-SIZED ROOM.
2050 FOR I = 1 TO 20:F = @

59

2135
28953

2960
2961
2963
2990
3000
3001
3002
3010

3015

3020

3021

3022

FOR 4 = 1 TO 4:
F = F + TR(I»J)z
NOT F THEN 2035
NEXT 1
¥0 = INT (
1
GU =
1
IF GF THEN
EX INT «
1
Bl1 =
1
BZ =
1
P1 =
1
P2 =
1
RETURN
IF INT (RND (
2 OR TR(I +J)
RO = INT (
1: IF RO =
DI = INT (RND
IF TR(RODI)
TR(I »J) =
RETURN

RND
INT (RND

GU =
RND

INT (RND

INT (RND
INT ¢ RND

INT (RND

RND

REM

HOME =

*%% PLAY

UTAB 3:

THEN

HTAB 12:
"#%% GRUE STEW **x":

GOSuUB 2955:
NEXT J: IF

(1)

e
rJ
=
+

(1) *

—t

(1) * 20) +

(1) * 20) +

(1) * 20) +

(1) * 20) +

(1) * 20) +

1) # 3) + 1 =
RETURN

(1) * 20) +

I THEN 2835

(1) * 4) + 1

THEN 28535
RO:TR(RODI) = 1

PRINT
UTAB 7

PRINT PRINT RO%(YD): FOR
I =1 TO 10:XX = PEEK (- 1
6336): NEXT I

FOR I = 1 TO 4:C0 = TR(YO.I
)

IF CO = EX THEN PRINT BELL
$"EXIT NEARBY +.."

IF CO = GU THEN PRINT BELL

$"1 SMELL THE GRUE

60

302 IF CO = B1 OR CO = BZ THEN

PRINT BELL$"FLAP... FLAP...,

FLAP 4"

3024 IF CO = P1 OR CO = P2 THEN
PRINT BELL$"I FEEL A DRAFT
R

3025 NEXT

3026 IF INT (RND (1) % 13) = 4
THEN PRINT BELL$"<<< EARTH

w

QUAKE >>>": GOSUB 2105: GOTO
3013

303@ PRINT : INPUT "MOVE OR SHOO
T? "35ANS$: IF ANS$ = "§" THE
3500

3035 IF ANS% < > "M" THEN PRIN
“TYPE IN ‘M’ OR ‘S’+..,": GOT
3030

304@ INPUT "WHICH WAY?"3sANS$: FO
I = 1 TO 4: IF ANS$ < » MI

("NESW" +Is1) THEN NEXT : PR
"ENTER ‘N’ ‘E’s ‘W’y OR ‘S’
"+ GOTO 3030

3045 IF NOT TR(YD.,I) THEN PRIN
BELL$"YOU CANNOT GO THAT WAY

veo": GOTO 3015

305@ PRINT "OK +..":¥0 = TR(YO:I
)

3051 IF YO

EX THEN WL @: RET

3052 IF YO

GU THEN WL

1: RET

3053 IF YO P1 OR YO = P1 THEN
WL = 2: RETURN

3054 IF YO < » B1 AND YO ¢ > B
2 THEN 3015

3055 PRINT "BATS HAVE YOU !1t1";
"THEY'RE LIFTING YOU UP t11®
: PRINT "OHHHHH: WHERE ARE W
E NOW ?77?":Y0 = INT (RND ¢
1) * 20) + 1: GOTO 3015

—

N

T
0

R
D%
INT

T

URN

URN

PRINT

61

4000
4001
4002
a01@

4013

4023

INPUT "SHOOT WHICH MWAY? "3A
NSE$: FOR I = 1 TO 4: IF ANS%
: MID% ("NESW" I s+1) THEN
NEXT : PRINT "TYPE IN ‘N’
‘E’y ‘W OR ’S7": GOTO 3030

IF NOT TR(YO,I) THEN PRINT
BELL$"CLUNK!": PRINT "THE AR
ROW BOUNCED OFF THE WALL.": GOTO
3815

IF TR(YO»I) = GU THEN PRINT

BELL$BELL®"OUCH !!!": PRINT
"YOU BAGGED A GRUE !!!": PRINT
"NOW TO FIND THE WAY OUT +..
":1GF = 1:GU = - 1: GOTO 301

)
PRINT BELL$"THE ARROW MISSE
D THE GRUE tti": GOTO 3015

REM *#% END

IF WL = @ AND GF THEN PRINT
"YOU HAVE REACHED THE EXIT W
ITH YOUR": PRINT "GRUE !!1D Y
OU WILL HAVE A FILLING SUPPE
R": PRINT "TONIGHT FOR SURE
Pri®s RETURN

IF WL = @ THEN PRINT "YOU
HAVE REACHED THE EXIT WITHOU
T": PRINT "ANY GRUE !!! YOU
ARE SURE TO STARVE ..": RETURN

IF WL = 1 THEN PRINT "YOU
BUMPED INTO THE GRUE !!!": PRINT
"HE ATE YOU BEFORE YOU COULD

MOVE 1": RETURN

IF WL = 2 THEN PRINT "YOU
FELL INTO A PIT ttI": PRINT
"YOU FELL A LOOOOOONG WAY ..
+"t2 RETURN

62

&7
2 .
7" Your O=
TAX (’ }m
$100,000~e :J’r
DUE Nowt @ =
PAY BELOW ’
2

4

=

/ D

”‘b"‘ N e

A clever premise overshadows an interesting game. The IRSman serves as an
excellent mathematical teaching device, while being entertaining and
challenging. Everyone wants to beat the IRS, now here’s your chance! To play,
choose a number (we’ll call it “X’), and the digits 1 through X will appear. Each
time you remove a number from the list, all of the factors of that number
(which are still on the list) go to the IRSman. The object is to garner as much
money as possible, while being as stingy as possible with the IRSman. If you
play the number 12, 1-2-3-4-5-6-7-8-9-10-11-12 will appear on the screen. If you
begin play by selecting 12, the IRSman will get 6,2,4,3, and 1 (6x2=12,
4x3=12, 1x12=12) for a score of 16 to your 12. The board will now look like
this: 11 10 9 8 7'5. As you will note, the only remaining number on the list
which has a factor, is 10 (the remaining factor is 5). Remember, to remove a
dollar amount (a number) from the list, there must be a factor to go to the
IRSman. When you remove 10 from the above example, the score will be 22
(12+10) for you, and 21 (16 +5) for the IRSman. But look . . . the list now
reads: 11 9 8 7. None of these numbers has a factor left on the list, so they all
revert to the IRSman. The final score would be 22 for you, and 56
(21+11+9+8+7) for the IRSman. If you choose 6 before choosing 12, the
IRSman scores for 3x2=6, (5 dollars) and 1x6 (1 dollar) for a total of 6 dollars
for him and 6 dollars for you. The digits may only be used once, so 6,3,2, and
1 are removed from the list. Now when you choose 12, the IRSman only gets 4
dollars (4x3=12). Now the score is 18 (6 +12) for you, and 10 (6 +4) for the
IRSman. Note that 11 is stuck because the only factors of 11 are 11 and 1. Don't
waste the universal factor (1) on just any number. It should be used first, to
remove the highest prime number from the list. A prime number is one that is
only divisible by itself and 1. Examples are 1,2,3,5,7,11,13,17,19,23, etc. To
circumvent the loss of 11, choose this number before choosing 6. There are

63

many ways to thwart the IRSman, but you must really try. Remember that all
of the unused numbers (at the end of the game) are added to the score of the
IRSman. The maximum score you can achieve when choosing 1 through 12, is
48.

1@ REM 3 36 6 ¥ 3 I 3 3 I ¥ 3 I I R

11 REM *%#% * % %
12 REM #%* IRSMAN * % ¥
13 REM *%% ¥* % %
14 REM S¥%XXXXRERXERXXEXRERRE
15 REM
16 REM

20 GOSUB 100@: REM INSTS
30 GOSUB 2000: REM SETUP
49 GOSUB 3000: REM PLAY!
50 GOSsUB 4000: REM TEND!

6@ END

1000 :

1081 REM *%% INSTS

1002 :

101@ TEXT : NORMAL : HOME

102@ VTAB 2: HTAB 13: PRINT "#**x
IRSMAN **%"
1030 VUTAB 5: PRINT "THIS IS THE
GAME OF IRSMAN. TO WINs YOU
TRY TO ACCUMULATE MORE MONEY
THAN YOUR NEMESIS: THE IRS
MAN. "
1833 PRINT
1235 PRINT "GIVE ME A NUMBER BET
WEEN 1 AND 350. I WILL D
ISPLAY A CONSECUTIVE NUMBER
STRING STARTING AT 1+ AN
D CONTINUING "y
1836 PRINT "THROUGH TO THE NUMBE
R YOU SELECTED. YOUWILL THE
N CHOOSE HOW MUCH MONEY (WHI
CH NUMBER) YOU WANT TO REMO
VE FROM THE LIST."
1238 PRINT
1049 PRINT "BUT: AND HERE'S THE
FUN PART, THE IRSMANGETS ALL
OF THE REMAINING NUMBERS ON
THE" 3

~

64

1042

1043

1233
1060

1865

1066
1070

PRINT "LIST THAT ARE FACTOR
8§ OF THE NUMBER YOU CHOSE.
THAT IS HOW THE IRSMAN GETS
HIS MONEY. IF YOU CHOOSE G

FOR EXAMPLE» "3
PRINT "“THE IRSMAN GETS ALL
OF THE REMAINING FACTORS

OF 6» (POTENTIALLY 1,2+ AND
3)."

PRINT : INPUT "PRESS RETURN
WHEN READY TO CONTINUE : "3
ANS %

TEXT : NORMAL : HOME

UTAB 2: HTAB 13: PRINT "#**#%
IRGMAN *%x*"

UTAB S: PRINT "YOU CANNOT C

HOOSE A NUMBER THAT HAS NO
REMAINING FACTORS IN THE LIS
T+ BECAUSE YOU MUST ALMWAYS
PAY THE IRS."

PRINT

PRINT "WHEN YOU CAN NO LONG
ER REMOVE ANY OF THEREMAININ
G NUMBERS FROM THE LIST.: THE

IRSMAN CLAIMS ALL OF THE

UNUSED MONEY (NUMBERS) FO
R HIMSELF."

UTAB 23: INPUT "PRESS RETUR
N WHEN READY TO CONTINUE : "
TANG$

RETURN

REM *%% SETUP

DIM LI(S@): FOR I = 1 TO 50
:LICI) = I: NEXT

UTAB 23: CALL - 9358

PRINT CHR% (7): INPUT "HOMW

MANY NUMBERS (1-58@) IN THE
LIST? "3ANS%

&5

2030
2990
3000
- 3001
3002
3003

3010

3013

3020
3021

3030

3031
3033

3035

3040
3050

3060

3065

ANS = UAL (ANS%$): IF ANS ¢

1 OR ANS » 50 OR ANS < > INT
(ANS) THEN VUTAB 22: CALL -
958: PRINT : PRINT "<<< USE

A NUMBER FROM 1 TO 350 >>:": FOR
PA = 1 TO 2000: NEXT : GOTO
2020

NU = ANS

RETURN

REM #%%x PLAY!

HOME : WTAB 3: HTAB 13: PRINT
"#%% IRSMAN *#*%": PRINT

PRINT : PRINT "HERE IS THE
LIST ¢ "3: FOR I = 1 TO NU: IF
LI(I) THEN PRINT I" "3

IF PEEK (3B) > 35 THEN PRINT
NEXT I

IF NU = 1 THEN PRINT : PRINT

: PRINT "0OO0OOOPS, YOU CAN'T G
ET ANYTHING...":TA = 1:LI(1)
= @: RETURN

FOR I = 2 TO NU: IF NOT LI
(I) THEN 3040

-FOR J4 = 1 TO I: IF NOT LI
J) THEN 3235

IF 4 = I THEN 3@35

IF LI(I) /7 J = INT (LICI) /
J) THEN 3050

NEXT J

NEXT I: RETURN

PRINT = PRINT : PRINT "THE
SCORE IS: IRGMAN: "TA: PRINT
n *\IDU* s Il\|ID
u

PRINT : INPUT "WHICH DO YOU
WANT? " 35ANGS®
ANS = UAL (ANS$): IF ANS <

1 OR ANS * NU OR LI(ANS) = 0
OR ANS < > INT (ANS) THEN
PRINT : PRINT "THAT IS NOT

AVAILABLE !'": GOTO 3060

66

3070
3073

3076
3080

3090
3100

3103
3110

3113
3120

3123
3130
4000
4001
a002
a019

4015
4016
4029

4021
a0z22

4030

4035

4049

4990

SC = @: IF AN = 1 THEN 3100
FOR I = 1 TO AN: IF LIC(I) =
@ THEN 3090

IF I = AN THEN 3090

IF AN /7 I = INT (AN /7 I) T
SC = 8C + 1

NEXT I

IF SC = @ THEN PRINT : PRI
"YOU CAN‘T HAVE IT. THAT LEA
VES NOTHING FOR THE IRSMAN®
: GOTO 3010 |
LICAN) = @:¥0 = YO + AN:TA
TA + SC

FOR I = 1 TO AN: IF LICI)
@ THEN 3125

IF T = AN THEN 3125

IF AN /7 T = INT (AN /7 1) T
LI(I) = @

NEXT I

GOTO 3010

REM #%*% END

PRINT : PRINT ¢ PRINT "*%%*

THE GAME IS OVER ##%%": PRINT

FOR I = 1 TO NU: IF LICI) T
TA = TA + LI(I)

NEXT

PRINT "THE IRSMAN: "TA
PRINT “ You: "YO
PRINT VY"===z====s====s=ss=s=s===';

IF TA » YO THEN PRINT "THE
IRSMAN IS THE WINNER t!IM

IF TA < YO THEN PRINT "YOU
HAVE BEATEN THE IRSMAN 111"

HEN

NT

HEN

HEN

IF TA = YO THEN PRINT "IT'S

UNBELIEVABLE BUT ITS A TIE
reee

PRINT CHR% (7)35 CHR% (7)3
(7)

RETURN

CHR$

67

RN

2
?
732

/i

This game is designed to test your leadership ability. You are given a ten year
reign, during which time you try to guide your kingdom towards health and
prosperity. There are certain conditions which are beyond your control (such
as the bountiful nature of the harvest), but try to do the best job possible.
When the price of acreage is high, (25 or 26 bushels per acre), you may choose
to become a land broker instead of a gentleman farmer. That is, you may sell
all but one acre of land (you must keep 1), and hope the price of land drops
the following year. If the price of land drops by 4 bushels (say, from 26 to 22),
you have, in effect, made a 4 bushel per acre profit. When the price of land is
low, (below 20 bushels for an acre), it is recommended that you buy as much
land as possible, while retaining enough grain to feed your people and sow
your fields. You can easily understand the program by manipulating the
beginning values of the variables in line 2010 and changing some of the
random number statements which are the unpredictable forces of nature.

69

10
11
12
13
14
15
16
20
30
a0
- 50
6o
1000
1001
1002
1010
1020

1030

1040

1050

1060

1890
2000
2001

REM 3 3 3 3 3 3 3 9 I I I KR

REM #%% %%
REM ##% KINGDOM * % %
REM ¥* % * * % *
REM XXX EXXXXEXXERRXEXR
REM
REM

GOSUB 100@: REM INSTS
GOSUB Z2000: REM SETUP

GOSUB 300@: REM PLAY!

GOsuB 400@: REM !'END!

END

REM *#% INSTS

TEXT : NORMAL : HOME

UTAB 3: HTAB 12: PRINT "**#

KINGDOM *%x*"

UTAB 7: PRINT "THIS IS A SI
MULATION OF THE COUNTRY OF
SUMERIA. YOU ARE THE SOVERE
IGN RULER: AND YOU WILL GOV
ERN FOR 1@ YEARS."

PRINT : PRINT "THE DECISION
S THAT YOU MAKE WILL AFFECT
THE LIVES OF HUNDREDS OF PEO
PLE. YOUR DICTATORIAL SKIL
LS WILL BE RATED ONCE YOUR

REIGN HAS ENDED."

PRINT : PRINT "YOU WILL BE
ASKED TO MAKE SEVERAL KEY
DECISIONS EACH YEAR: WITH EA
CH ONE BEINGEXPLAINED TO YOU

UTAB 23: INPUT "HIT RETURN
WHEN READY TO CONTINUE : "3A
NG %

RETURN

REM *%% SETUP
95:5 = 2800:H = 3000:E =
S:Y = 3:4A = H / Y:I = 5:
@2 = @0:0Q = 1

70

2020 DIM NU$(11): FOR J = 1 T0O 1
1: READ NU#(J): NEXT : DATA
FIRST +SECOND s THIRD »FOURTH »F
IFTHsSIXTHSEVENTHEIGHTH NI
NTHsTENTHELEVENTH
2990 RETURN
3000 :
3001 REM *%% PLAY
3002 :
3005 HOME : UTAB 3: HTAB 12: PRINT
"#%% KINGDOM #%*%": UTAB 7
301@ 2 = 2 + 1: PRINT : PRINT "HA
MURABI» I BEG TO REPORT TO Y
OU: ": PRINT : PRINT "IN THE
"NU&(Z)" YEAR.: "D" PEOPLE "
: PRINT "STARVEDSF "I" CAME T
0O THE CITY."
3280 P = P + I: IF Q@ = @ THEN P =
INT (P /7 2): PRINT : PRINT
"A HORRIBLE PLAGUE STRUCK !!
I HALF OF YOUR PEOPLE PER
ISHED s+ "
3285 PRINT
3290 PRINT "THE POPULATION IS "P
"+ THE CITY OWNS ": PRINT A
" ACRES. YOU HARVESTED "Y"
BUSHELS": PRINT "PER ACRE.
RATS ATE "E" BUSHELS.": PRINT
"YOU HAVE "S" BUSHELS IN RES

ERVE."

3300 IF Z2 = 11 THEN RETURN

3400 C = INT (RND (1) % 1@):Y =
cC + 17

3418 PRINT : PRINT "LAND IS TRAD
ING AT "Y" BUSHELS PER ACRE.
": PRINT "HOW MANY ACRES DO
YOU WISH TO BUY : ": INPUT Q

34490 IF Q < @ THEN PRINT "HAMUR
ABI» YOU CANNOT DO THAT.": PRINT
"IF YOU WISH TO SELL LAND, "
: PRINT "FIRST BUY @ ACRES."

: GOTO 3410

71

3505

3510

3520

3930

3535

3540

IF Y # Q@ » 5 THEN PRINT "H
AMURABI » THINK AGAIN! YQOU O
NLY HAVE": PRINT 8" BUSHELS
OF GRAIN.": GOTO 3410

IF @ > @ THEN A = A + Q:5 =
S - Y # Q:C = @: GOTO 3500

INPUT "HOW MANY ACRES DO YO
U WISH TO SELL?"3Q

IF O £ @ THEN PRINT "HAMUR
ABI» I CANNOT DO THAT. IF Y
OU": PRINT "DON'T WANT TO SE
LL ANYTHING: THEN": PRINT "8
ELL @ ACRES.": GOTO 34Go

IF (@ » A) THEN PRINT
URABI » YOU ONLY OWN "A"
Sseae"s GOTO 3460
A=A - 0Q:5 =8 + Y % Q:C =
@

PRINT : PRINT "OF THE "S8" B
USHELS REMAINING, HOW MANY":

PRINT "DO YOU WISH TO FEED

"HAM
ACRE

YOUR PEOPLE:":

INPUT @

IF © < 1 THEN
ABI »

PRINT

"HAMUR

THE PEOPLE WILL STARVE

titts PRINT "YOU MUST FEED T
HEM SOMETHING.": GOTO 3500

IF @ » 8 THEN PRINT "HAMUR
ABI » YOU ONLY OWN "S" BUSHEL
5 oop"= GOTO 3500
§ =686 - 0Q:C =1

PRINT : PRINT "OF THE "A" A
CRES YOU NOW OWN: HOW": INPUT

"MANY DO YOU WISH TO PLANT W

ITH SEED? "3iD

IF D € 1 THEN
ABI »
G S0": PRINT

PRINT

"HAMUR

YOU MUST PLANT SOMETHIN
“THAT THERE WIL

L BE FOOD FOR NEXT YEAR ...

: GOTO 3530

IF (D > A) THEN PRINT "YOU
ONLY HAVE "A" ACRES.": GOTO
3530

72

3545 IF D / 2 » 8 THEN PRINT "H
AMURABI » THAT IS TOO MUCH TO
PLANT...": GOTO 3530

355¢ IF D » 1@ * P THEN PRINT *
YOU CAN ONLY FORCE ONE PERSO
N TO ": PRINT "WORK TEN ACRE
S OF LAND.": PRINT "YOUR POP
ULATION OF "P" ISN'T BIG ENO
UGH.": GOTO 3530 :

3555 8 = 8§ - INT (D / 2):C = INT
(RND (1) * 3) + 1

3600@ Y = C:H = D % Y:E = @:C = INT
(RND (1) * 35) + 1: IF INT
(C /7 2) » 2 = C THEN E = INT
(s /7 C)

3618 8 = § - E + H:C = INT (RND
(1) * 3) + 1:I = INT (C * (
20 * A+ 8) / P/ 100 + 1):C
= INT (Q / 2@):Q = INT (1

@ * (2 ¥ RND (1) - 3)): IF
P < C THEN D = @: GOTO 3010
3615 D = P - C: IF D * .50 % P THEN

3630

362@ P1 = ((2 - 1) * P1 + D * 100
/ P)Y / Z:P = C:D1 = D1 + D:
GOTO 3010

363® PRINT : PRINT "YOU STARVED
"D" PEOPLE IN ONE YEAR !": PRINT
"YOU HAVE DONE SUCH A MISERA
BLE JOB": PRINT "THAT YOU HA
VE BEEN OVERTHROWN": PRINT "
AND REMOVED FROM OFFICE t1t1i®
:tWL = 1: RETURN

4000 :

40@1 REM #*%x% END

4002 :

40@3 IF WL THEN RETURN

401® PRINT : PRINT : PRINT "IN Y
OUR 10 YEARS OF RULE, "P1"%
": PRINT "OF THE POPULATION
STARVED PER YEARs ON": PRINT
"THE AVERAGE.": PRINT "A TOT
AL OF "D1" PEOPLE DIED.":L =
A/ P

73

4015
4020

4030

4935

a040

4043

PRINT

PRINT "YOU STARTED WITH 1@
ACRES PER PERSON: AND ENDE
D WITH "L" ACRES PER PER
SON i ®

IF P1 > 33 OR L < 7 THEN PRINT
"YOU ARE A DISGRACE!!! THE
PEOPLE HAVE EXILED YOU TO A
REMOTE ISLAND.": RETURN

IF P1 > 1@ OR L < 9 THEN PRINT
"YOU RULE LIKE THE AYATOLLAH

I MOST OF YOUR SUBJECTS W
OULD DANCE AT YOUR FUN
ERAL!": RETURN

IF P1 > 3 OR L < 1@ THEN PRINT
"YOU COULD HAVE DONE BETTER.

" INT (P % .8 % RND (1))"
PEOPLE": PRINT "WOULD LOVE T
0 SEE YDU ASSASSINATED!!!": RETURN

PRINT : PRINT "A GREAT JOB!
i1 YOU CAN RULE MY COUNTRY
ANY TIME YOU WANT TO !t!t1": RETURN

74

In this game you try to alphabetize a scrambled list of letters. One square is
left blank so that you may move a letter into it. The computer will scramble the
completed version approximat<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>