

By Mark James Capella and Michael D. Weinstock
Learn programming the fun enjoyable way...by gaming! Included is a vast selection of classic games for your Apple written in Applesoft BASIC. Why make programming hard work?

GAMES APPLES PLAY

CAMIES apples play

by
 Mark James Capella

 and
Michael D. Weinstock

Commentaries on Games Listings by
 Scott L.Singer

Cover Art and Illustrations by
Art Huff

(al) DATAMOST:

8943 Fullbright Avenue
Chatsworth, California 91311
(213) 709-12 02

Reston Publishing Company, Inc.
A Prentice-Hall Company
Reston, Virginia
ISBN 0-8359-2417-3
This book is published and copyrighted by DATAMOST. All rights are reserved by DATAMOST. Copying, duplicating, selling or otherwise distributing this product is hereby expressly forbidden except by prior written consent of DATAMOST.

The word APPLE and the Apple logo are registered trademarks of APPLE COMPUTER, INC.
APPLE COMPUTER, INC. was not in any way involved in the writing or other preparation of this book, nor were the facts presented here reviewed for accuracy by that company. Use of the term APPLE should not be construed to represent any endorsement, offical or otherwise, by APPLE COMPUTER, INC.

ACKNOWLEDGMENTS

To my wife, Genie, for all those times she turned her head to see me sneaking up the stairs to the computer room.

> Mark James Capella

To Diana and Aaron. Diana for her patience, understanding and the cold dinners she ate while waiting for me to finish just a little bit more. Aaron for the thrill of understanding what is means having a four year old around when things just aren't working correctly.

To Brian Davis for his creative artistic talents that greatly assisted our effort.

To Scott Singer for his enlightening commentary on the programs.
To Dave Gordon because he is Dave Gordon, a trusted friend.
Michael D. Weinstock

Table of Contents

Introduction -- Using Games to Learn BASIC 9
SCI-FI 17
Apple Learner 33
Biorhythm 37
Connect Five 43
Digits 49
Grue Stew 55
IRSMan 63
Kingdom 69
Magic Squares 75
Numbers Away 81
Reverser 89
Transition 93
Word Scramble 97
MUBBLE CHASE 105
Air Attack 127
Artist Board 133
Barrel of Fun 137
Block 'Em 145
Brain Teaser 151
Brick Wall 157
Craps 163
Dragon's Lair 169
Hang Man 177
Itche 183
Knock Out 189
Leaky Faucet 195
Match the Key 199
Miniature Golf 205
Moving Target 217
Point Attack 221
Robot Chase 225
Safe Cracker 231
Saucer Duels 237
Schmoo 243
Stardodger 249
Stranded 255
Target 259
Twinky 263

INTRODUCTION Using games to learn BASIC

Commercially written games for the Apple computer are now being written in machine language with elaborate copy protection schemes. Techniques to increase speed and foil pirates also have the effect of making games both hard to understand and hard to learn from. Such was not always the case. In the good old days of 16 K Apples and cassette tapes, the games were given away at user groups. Most of the games were in Integer BASIC. The listings were published in magazines and newsletters, and seldom exceeded two pages. Novice programmers didn't care that you could drink an entire soda pop before the ship got across the screen or that you could watch the bombs falling in slow motion, blip_-blip_-blip. Most of the people using those games wanted to learn about programming color graphics, and games were a good way to learn. Author Mike Weinstock has compiled a selection of the classic games such as AIR ATTACK and SAUCER DUELS that have been the precursor of many of the faster arcade games. Many types of games are not dependent on speed, such as adventure games like DRAGON'S LAIR, word games like HANG MAN and board games such as CONNECT-FIVE. These are all included along with many clever new games written by the author.

The games are written in Applesoft BASIC in a structured format. Structuring makes the programs more understandable and allows you to easily lift or adapt any routines that you like for inclusion in your own programs. The workings of each game are explained in a way that allows you to modify and customize the games to your heart's content. Two of the games, Mubble Chase and Sci Fi, are examined line by line. Sci-Fi introduces the principles of text formatting, word games, data statements, and input routines. Mubble Chase will help you understand how grids are constructed and graphic figures are moved and detected.

Most of the programs in this book are structured in the same way, with a GOSUB, an empty target line and a RETURN line in exactly the same place. This allows you to start writing the 'action' parts of the program first and fill in the title screen, instructions, and ending routines later. This is a complete outline program that will RUN but doesn't do anything:

```
10 REM STRUCTURED PROGRAM
20 GOSUB 1000: REM INSTRUCTIONS
30 GOSUB 2000: REM SETUP
40 GOSUB 3000: REM PLAY
50 GOSUB 4000: REM END
G0 END
1000:
1990 RETURN
2000:
2990 RETURN
3000:
3990 RETURN
4000:
4990 RETURN
```


You can use this program as an outline for your own original programs. It helps you to stay organized and reminds you of what parts need finishing. Give this progam a snappy title such as EMPTY and save it on a diskette. Load it into memory when you feel creative and start writing within the framework.

Techniques are given here that allow you to dissect basic programs and see what makes them tick. The games themselves are hours of fun. You will learn a lot about programming and de-bugging by typing in the games from the book and making them run correctly, or you may order the games diskette from DataMost, and use dissecting techniques described here to investigate their inner workings. Either way, you will not find a more enjoyable way to learn BASIC!

Do not be afraid of your computer! Remember, you are smart and the computer is dumb. The reason that programs have bugs in them is that the computer has to be told every little thing. It can't figure out a misspelled word the way you can. Fortunately Applesoft was written by some very clever humans who tried to program the computer to forgive as many errors as possible and to give very clear error messages for mistakes it does find. Relax and have fun. NOTHING you type in from the keyboard can hurt the workings of the computer, you will just get what is called GIGO-garbage ingarbage out.

Whatever is typed into the computer's memory or loaded in from a tape or disk drive exists in a temporary state. If you turn off the computer or the dog trips over the power cord the program is gone-vaporized. If the program came from a tape or diskette it is still there and can be re-loaded as if nothing happened. We emphasize this because we want you to play around with the programs, change the lines around, put in silly statements and eventually get it so messed up that you will want to throw it away and load in the original. This is the best way to learn. Try these techniques for investigating the inner workings of programs:

Change lines

As an example, if you see COLOR $=X$, change it to color $=8$ (red). Run the program and you will see that some figure that is supposed to change color now just stays red; often figures are drawn in one color, redrawn in black, and drawn again in color one space over. This makes the figure appear to move. If the figure becomes a red streak on the screen you have discovered the line that moves the figure. You will also know when the line is used in the program and what is affected by the variation you introduced. Change variables (A B X Y etc.) to arbitrary numbers. Do things get stuck? Do you get overflow or 'illegal
quantity' errors? Variables are often the hardest things to understand. After a line containing a variable ' A ' (or any variable) you can add a print statement :PRINT A. A number representing the value of ' A ' will flash on the screen when the line gets executed and this number may give a clue to the function of variable 'A' (we don't guarantee it).

Use TRACE

Just type this magic word before you run the program and the line numbers that are being executed are displayed at the bottom of the screen. Watch for repeated series; this is the program loop where the action occurs. TRACE stays on until you enter NOTRACE or RESET.

Use STOP

Put in STOP in a separate line, giving it a number between two numbered lines in the program. The program will stop at that point and wait for you to type CONT(inue). By using STOP you can tell what parts of the program execute before STOP is reached.

Detour

If you want to know what the program will do without line 100, put a GOTO in front of it sending the program around line 100 without ever executing it.

```
99 GOTO 110 (add this line)
100 E=MC*MC (mystery line)
```

110 PRINT "Hello"

Now you can see what the program does without line 100. Does it still run? What goes wrong? Restore the program by typing 99 with nothing after it. This deletes both the line and the line number that you added.

Delete lines

A quicker technique than the detour. Just type the line number and RETURN to eliminate the line from the program. Use this method when the line numbers are too close together for detouring or have lots of GOTO and RETURN. Just reload the program from diskette to undo all your surgical mishaps.

Add a 'beep'

If you want to know when a line is executed add a line PRINT CHR\$(7) immediately after it. Be sure the line above doesn't send the program somewhere else with a GOTO or RETURN. If it does, rewrite the line with PRINT CHR\$(7): at the beginning of the mystery line. The computer will obligingly beep when the line is executed.

Isolate parts of programs

Take away all but a few lines of the program by use of DEL(ete) 100,1200 or whatever line numbers are appropriate. Get the portion that is left to work by adding a few lines of your own. Mix parts of programs together using the Renumber program that is part of the DOS master diskette that comes with the Apple. Renumber has a MERGE utility that lets you put one program on hold, load another program, and merge the two together. You may get crazy results, but a lot can be learned in the process. You can name and save a part of a program even if it doesn't run. Leave yourself little notes (REMs) to remind you where the pieces came from.

Add paddlle or keyboard input

If you want to see the action of variable ' X ' you can add a line
NNN (line number) $X=\operatorname{PDL}(\theta)$
You have to experiment around to find the right place for this line in the program loop. You will be able to control some action of the program that was previously automatic. Whatever value the program assigned to X up this point will be replaced by the X you insert. The paddle returns a value from 0 to 255 . If this number is too large and makes the program crash, the value of paddle (0) can be divided to yield just the right range of values:
$X=I N T(P D L(D) / 6.5)$
This command will give you INTegers (whole numbers with no decimals) from 0 to 39 to use with the lo-res graphics screen that is 40 characters wide. Of course additional variables can be controlled with paddle (1) and keyboard inputs until the entire program loop is under your control.

Save the programs you have changed around

When you get something that works, save it as an intermediate version even if you want to continue making changes. Often we make some useful changes and then mess the program up with later additions. You can delete extra versions later on if you run short of disk space. The only way to lose a program on diskette is to save another program with the same name on the same diskette. SO USE A DIFFERENT NAME!

Don't forget that you must turn on the computer with a DOS diskette in drive number one in order to be able to save programs to diskette. This is called BOOTING DOS. You can check to see if DOS is there by typing CATALOG. Always keep a few initialized empty diskettes handy, because the diskette must be initialized before it can be used. Here is a handy little HELLO program that will display the catalog of the diskette every time it is booted:

Turn on the Apple with the DOS Master diskette in drive one. When the] prompt appears type NEW

```
10 TEXT:HOME
20 D$= CHR&(4):REM THIS IS CONTROL D
30 PRINT "JOHN DOE'S GAME DISKETTE"
40 PRINT "TODAY'S DATE"
50 PRINT D&:"CATALOG"
```

Run the program to test it out, and then place a new diskette in drive one. Be sure the diskette is empty because initializing a diskette erases everything that was on it. Add this line to the HELLO program:

GO NEW

Don't run the program after you have added this line, because line 60 erases the HELLO program from memory and leaves the computer 'empty' for your program to be entered.

Type INIT HELLO < RETURN>

Apple will create an initialized diskette that will display its catalog when booted and then clear the decks for your programs. This diskette will load DOS and allow you to save programs. You will not have to use the DOS MASTER diskette first.

Before the individual programs are explained, copy and run the following program.

```
10 GR
20 FOR I = 0 TO 15
30 COLOR= I
40 VLIN 0.34 AT 2*I+3
5 0 ~ N E X T
\begin{tabular}{lllllllllllllllll}
60 & PRINT " & \(*\) & \(*\) & \(*\) & \(*\) & \(*\) & \(*\) & \(*\) & \(*\) & \(*\) & \(*\) & 1 & 1 & 1 & 1 & 1 \\
1 & 11
\end{tabular}
```

You will note that above the zero (0) there is, apparently, a blank space. Actually, the color zero is black (the background color), so what you see (or don't see) is a black line drawn on a black background.

Fill up your program diskette and have fun.

> A note about BUGS! It is not inconceivable that a few mistakes have crept into the following listings. Trust your intuition and tinker with the program even if you have to change what is in the book. Please drop us a card if you find a real boo-boo.

This program is not a game, rather, it is an entertaining collection of short stories which you make as personal as you want. You are given the chance to enter your own data. As with MUBBLE CHASE, this program will be described line by line.

10 REM stands for REMark. Any comments, numbers, symbols, expletives, or anything else may follow REM. In this case, the remark is used to highlight the program name. The computer, in effect, ignores the material which follows REM. In this case, the

> REMark ******************** is made.

11-16 completes the title with REM statements including two blank lines for readability.

20 The entire program is controlled by lines 20 through 50. There are actually two parts to line 20. First, GOSUB 1000 instructs the computer to go to line 1000, and to continue from there until the command RETURN is encountered. The second instruction, REM, is allowed on the same line for only one reason. The colon (:) allows the programmer to clump many, not necessarily related, instructions onto the same command line. This is usually done to show that certain pieces of a program are so closely related, that to isolate them on separate lines would belie their common purpose or association. The REMark: INSTRUCTIONS is the programmer's way of telling the reader that the subroutine beginning at line 1000 (GOSUB 1000) is where you can find the INSTRUCTIONS. In this case, the remark serves to explain the purpose of the subroutine rather than serving the equally important, but more eccentric, role of lines 10 through 16 .

30 When the subroutine, begun by line 20, is completed by the RETURN statement, the program, having completed line 20, drops down to the next
sequential instruction, which in this case is line 30 . Like line 20, this line first initiates a subroutine (GOSUB 2000), and then informs the reader as to the main emphasis of the subroutine, which is the program SET-UP.

40 This line is identical, in function, to line 30 .
50 END returns control to the machine. Control WAS with the program.
1000 This line is the 'target' of the GOSUB in line 20.
1001 Here, the REMark: *** INSTS is again made to inform the reader of the function of the subroutine.

1010 This line contains three, distinct instructions. TEXT instructs the computer to change to (if not already in) the text mode. In this mode, all forty lines are reserved for text. The use of color is reserved for the graphics mode. Next, the instruction NORMAL is encountered. This command instructs the computer to display the text using white letters on a black background. HOME clears the screen of all text. Instructions such as this are called 'housekeeping', and should be included in all your programs.

1020 VTAB is the programmer's way of telling the computer to Vertically TAB down three spaces. The reason that VTAB instructs the computer to tab DOWN, is that in terms of X and $Y, 0,0$ is in the UPPER left-hand corner. After the computer Vertically TABs down three (3) lines from the top of the screen, it is told to Horizontally TAB thirteen (13) spaces to the right. The next instruction, PRINT, tells the computer to prepare to output whatever follows. If the material is written between a set of quotes, then whatever is enclosed by the quotes is printed verbatim. If there are no quotes, then the numeric value of the variable will be printed. To illustrate, if a program reads: $10 \mathrm{X}=5$ 20 PRINT " $X+3$ " the output will read ' $X+3$ '. On the other hand, if a program reads: $10 X=520$ PRINT $X+3$ the output will be ' 8 '. Line 1020 causes the message ${ }^{* * *}$ SCI-FI *** to be printed. It will begin at a position three lines from the top (VTAB 3) and thirteen columns from the left margin (HTAB 13).

1030 After Vertically Tabbing down seven (7) lines, the message that appears between the quotes will be printed. This time, the message will begin at the left-hand margin.

1040 The empty PRINT statement serves a very useful purpose. What this statement does is to PRINT a blank line. Notice that some of the words of text in the listings are split in the middle and continue on the next line, but when printed on the screen by the program the text is neatly formatted. In the listing
there is no space between HOPESOF but it prints correctly when run. HOPE is at the end of the line, so OF would be indented one space when printed by the program if a space occurred in the listing. Good looking screen formats are a matter of trial and error. If you try to edit print statements using the arrow key you might have noticed that seven blank spaces are inserted in the text whenever the cursor wraps around a line. There is a cure for this problem that allows quick editing of basic listings: type POKE 33,33 < RETURN $>$ before typing LIST. The text will not be indented and can be easily copied over and parts changed. RESET gets things back to normal.

1050 Notice that the instructions asks you to type RETURN. Nothing gets entered in ANS\$ and in fact it becomes an 'empty' string. The function of ANS\$ in this program is just to hold up the works until you have read the screen and want to continue. Many programs ask for your name in a similar situation and then use the input in an appropriate response.

Try this:

```
1050 UTAB 23: INPUT "HI, WHAT'S YOUR NAME";NA$
10G0 PRINT"WELL HELLO ";NA末!", LETS PLAY SCI-FI"
1070 FOR I = 1 TO 2000:NEXT I
```

Since the program would dash off after it received NA\$ we add a delay loop in 1070 to wait just long enough for us to read line 1060. You can use any letters for variables as long as they are not basic commands (reserved words). For clarity variables should suggest what they perform. Programmers generally use ANS for answer and NA for names but are not required to. The ONGOTO command can provide excellent flexibilty in your programs. In Sci-Fi a random number sends the program off to different sections, but this command also works well for branching from a menu:

```
10 PRINT "PRESS 1 FOR SALAD, 2 FOR ENTREE, OR 3 FOR
DESSERT"
20 GET X
30 ON X GOTO 100,200,300
```

Starting at line 100 you would put the salad choices, etc. If you succeed in actually teaching the computer to make a salad let me know.

1990 RETURN ends the subroutine initiated by line 20 and begun at line 1000. At this point, program flow is RETURNed to line 20, and then line 30.

2000 As stated before, a blank colon (:) is a legitimate means of writing a virtually blank line within the program itself.

2001 On this line, the main function of the subroutine is detailed by a REM statement.

2002 This command line serves to separate line 2001 from the body of the text.
2005 This line appears to be a nebulous conglomeration of variables. Not so! This line serves a very specific purpose. DEF stands for DEFine. The next question is, what is to be defined? The answer is, a FuNction (FN). The FuNction being DEFined is $R(X)$. ' R ' is the given name of the function. ' X ' is a variable name which is equal to the FIRST INT (RND (1) $\left.{ }^{*} \mathrm{X}\right)+1$. Each time the FuNction ' R (any variable or digit)' is used, the variable inside the parentheses assumes the value of 'INT (RND (1) * (the new variable or digit)) +1 . Following will be a list which, hopefully, will help you to understand the 'DEF FN' statement.

FUNCTION
$\mathrm{A}(\mathrm{X})=4^{*} \mathrm{X}+5$
A(13)
A(Y)
$\mathrm{BS}(\mathrm{X})=\mathrm{X}^{*} \mathrm{X}-22$
BS(17)
BS(FN A(Y))
A(FN BS(17)

$$
\begin{gathered}
\text { VALUE OF FUNCTION } \\
\hline \mathrm{A}(\mathrm{X})=5\left(4^{*} 0+5\right) \\
\mathrm{A}(13)=57\left(4^{*} 13+5\right) \\
\mathrm{A}(\mathrm{Y})=29\left(4^{*} 6+5\right) \\
\mathrm{BS}(\mathrm{X})=-22\left(0^{*} 0-22\right) \\
\mathrm{BS}(17)=267\left(17^{*} 17-22\right) \\
\mathrm{BS}(\mathrm{FN} \mathrm{~A}(\mathrm{Y})=819 \\
\mathrm{A}\left(\mathrm{FN} \mathrm{BS}(17)=1073\left(267^{*} 4+5\right)\right.
\end{gathered}
$$

Here is a program to further illuminate the function of line 2005.

THE PROGRAM	THE OUTPUT
$10 \mathrm{~A}=17: \mathrm{C}=2.65$	-
20 DEF FN PRY(C) $=-\mathrm{A} * \mathrm{C}$	-
30 PRINT C; : PRINT FN PRY(C)	$2.65-45.05$
40 PRINT A; : PRINT FN PRY(A)	$17-289$
50 PRINT FN PRY(FN PRY(C))	765.85

Line 20 identifies the variable as being ' C '. Therefore, whenever the FuNction ' PRY ' is executed, the variable (or digit) within the parentheses is substituted for C. In line 2005, ' X ' is the variable. If the number five (5) is substituted for X, then the result is, $\mathrm{R}(5)=\operatorname{INT}(\operatorname{RND}(1) * 5+1$. The reason the DEF FN instruction is used in this program is so that whenever a random number between 1 and any other number is needed, all the programmer need write is R (any other number), and the random result will be generated.

2010 This line sets aside sixteen memory locations for SO\$. The instruction, DIM, instructs the computer to DIMension memory so as to allow for sixteen separate values of SO\$. Also, the value of SO is set to zero. The number in parentheses is the number of the array variable. Apple starts counting from (0).

2011 This line sets up a one-dimensional table in memory. This table can accomodate up to sixteen separate values of PL\$. Also, PL is set to 0 .

2012 and 2013 are both duplicates of lines 2010 and 2011.
2015 The READ statement is an interesting animal. What is does is to find the first available DATA statement and read from it. In this program, the first DATA statement is at line 2020. What happens is, the first piece of data before a comma (Alexander Haig) is read into (stored at) SO\$. Then a test is done to see if SO\$ is equal to END. If so, the program falls through to line 2016. If not, SO is incremented, SO\$(0) is assigned the value of the contents of SO\$ (Alexander Haig), and then the process is repeated (GOTO 2015). The program will next READ the second piece of DATA (Ronald Reagan) and store it in SO\$. The test will again prove negative, SO will be incremented, RONALD REAGAN will be stored at SO $\$(1)$, and the process will be repeated. After the seven pieces of DATA on line 2020 are read, the DATA statement on 2021 is read next. This time the test on line 2015 (SO\$ < > "END") will prove to be affirmative, so the program will fall through to line 2016. When you understand that SO, SO\$ and SO\$(0) are all different variables you get a gold star.

2016 Once a DATA statement has been read, it is no longer "available". Therefore, the first available data is on line 2025. It seems likely that PL stands for PLace. Actually, all of the variables are representative of their meaning.

2017 and 2018 Both of these lines are identical in function to line 2015.
2020 If the data in a DATA statement is to be read into a character-string location (a variable ended with a dollar sign), then it must be enclosed in quotes (" "). Each item is kept separate from other items by using a comma.

2021 through 2036 These are all DATA statements. All of the data could have been combined into one long DATA statement. The reason for dividing the lines was to add clarity.

2100 (six instructions) HOME clears the screen of text. The VTAB and HTAB instructions pinpoint where the beginning print location will be. The message, *** $\mathrm{SCI}=\mathrm{FI}{ }^{* * *}$, is outputed. The computer is next instructed to TAB down to line 22. At this point a message is printed.

2110 The messages printed at line 2100 still appear on the screen. Previously, the printing had been done on line 22 (VTAB) 22). The first instruction brings the computer back up to line 7 (VTAB 7). The message between the quotes is printed, starting at line seven at the left-hand margin. The empty PRINT statement follows the above message with a blank line.

2114 This line sets the counter (CO) to zero.
2115 Line 2110 revealed the nature of the input, now you have a place to put those names. Just input whatever you'd like. When you've entered five pieces of data, or when you enter nothing, the program will fall through to line 2117. The data that you input is stored in SO\$ (temporarily). Then the input is tested to see if "nothing" (RETURN) was entered. If so, the program falls through. If not, the line continues; CO is incremented; $\mathrm{SO} \$$ is moved to a permanent location (SO\$(SO)); the counter is incremented and tested; if the counter is not yet five, then the line is begun again.

2117 This line clears the screen (HOME), and then prints the message beginning at line three (VTAB 3) column thirteen (HTAB 13). Then the computer is instructed to tab down to line seven (VTAB 7).

2120-2145 continues the INPUT sequences for Places that will be Attacked, Names of Monsters, etc.

2150 RETURN ends the subroutine initiated by line 30 and started at line 2000. Program control is returned to line 30.

2900 This line sets the value of PT to one (1) each time the subroutine (lines 2900-2990) is begun.

2905 MID\$ states that the computer will look at the MIDdle of a given word. Which word? All of the remaining pertinent information is in the parentheses. The word or words that are to be checked by MID\$ are contained in WRD\$. Beginning at the left-hand side of WRD\$, the computer will begin the scrutiny at that character plus PT. If WRD\$ contained the phrase "I Love You", and PT equals six, then MID\$ (WRD\$,PT) would instruct the computer to begin looking at 'I Love You' six characters over from the left most character (the ' e ' in 'Love' is the SIXth character). If not specified, the computer will begin the
search at the designated location, and continue through to the end of the word/s. If you want a certain number of characters looked at, just specify that number after you tell the computer where to start. The following program should help.

PROGRAM	OUTPUT
10 A\$ $=$ "SEND MONEY"	--
20 PRINT MID\$ (A\$,4,5)	D MON
30 PRINT MID\$ (A\$,1,6)	SEND M

In line 20, the computer is told to search the MIDdle of A\$, to begin 4 characters from the left and to PRINT the next 5 characters. Likewise, line 30 tells the computer to PRINT the contents of A\$ beginning with character 1,and to continue for a total of 6 characters. You will admit that at the end of most words you will find a blank space. The test (IF MID\$ (WRD\$,PT,1) = " ") checks to see if the character at position PT is a blank space () and it checks to see if its line position is greater than 30 . PEEK (36) surveys the screen and checks to see if the cursor is beyond column 30 (there are 40 columns to a row $(0-39))$. If the cursor is beyond column 30 , and MID\$ (WRD\$,PT, 1$)=$ " ", then the next word to be written is in danger of overflowing the right-hand margin. To prevent this from happening, an affirmative test result will force the computer to skip to the next line before continuing to print.

2910 There are two steps to this line. First, PT is incremented ($\mathrm{PT}=\mathrm{PT}+1$). Second, the size of PT is compared to the character LENgth of WRD\$. For example, if WRD\$ contained the phrase EARTH WAS ATTACKED, then the LENgth of WRD\$ would equal the number of characters in that phrase (18). To prevent lines 2905 and 2910 from looping indefinitely, there must be some
contingency factor, some restraint which stops the loop. This is the function of the second half of line 2910. When PT is larger than the length of WRD\$, the program will fall through to line 2990.

2990 This line completes the subroutine begun at line 2900.
3000 This is the 'target' of the GOSUB in line 40
3001 The REMark *** PLAY is used to inform the reader of the main function of the subroutine starting at line 3000 .

3010 through 3070 instruct the computer to perform various subroutines.
These subroutines determine which format the story will reflect.
3075 and 3077 A legal filler and an empty line.
3080 The computer waits for you to indicate that you have finished reading the story by pressing RETURN. You could change this line to allow the reader to escape from further Sci-Fi literature.

3080 INPUT "HAD ENOUGH ":ANS\$
3085 IF LEFT\$(ANS\$,1) = "Y" THEN END
Using the LEFT string function to find the first letter of "yes" is standard practice, and most computerists are used to answering ' Y ' and expecting it to work. 'Yo', 'Yea', 'Yes', will all work. Any other response will end the program. Instead of END you could branch to a line at the end of the listings and add any farewell sequence you wished.

3100 This line first clears the screen of text (HOME). Then the function defined at line 2005 yields a RaNDom number between one and five. If the integer generated is one, then the program will branch to 3110 . If FN R(5) generates the integer ' 2 ', then the program branches to 3120 . If FN R(5) yields 3,4 , or 5 , then the program will branch to 3130,3140 , or 3150 respectively.

3110 through 3150 These lines PRINT the five different attention-getting headlines.

3200 Line 2016 counted the total number of PLaces saved in PL\$. FN R(PL) will yield a RaNDom integer ranging from one to PL. There is the name of a different place saved in PL\$(1), PL\$(2), PL\$(3).....PL\$(PL). What this line does is to randomly select one of the many PLaces and to copy it into the location WRD\$. Then the subroutine beginning at line 2900 checks to make sure that the PLace is not PRINTed in such a manner that it breaches the right margin.

3300 Like line 3100, selects a RaNDomly generated integer ranging from one to five (FN R(5)), and depending on the integer, branches to line 3310, 3320, 3330, 3340, or 3350.

3310 through 3350 These lines serve as continuations of the currently unfolding drama. One of the five rather repugnant actions is stored in the location WRD\$.

3400 Location WRD\$ already contains one of the five actions outlined on lines 3310 to 3350. These lines add the name of one of the many (MO) monsters (MO\$) to WRD\$. Line 2217 counted the number of monsters and stored the name of each one in an MO\$ location. This line RaNDomly selects one of the MOnsters and adds its name, plus a trailing blank space (" ") to WRD\$. Each time the subroutine at 2900 is performed, the contents of WRD\$ are PRINTed and cleared from WRD\$. Each time WRD\$ is emptied, the story grows.

3500 First, the word 'FROM' and a trailing space (" ") are stored in WRD\$. This word is added to the developing story. At the subroutine beginning at line 2900, the contents of WRD\$ (FROM) are added to the rapidly developing story. Then, the HOme base of the MOnsters is added to WRD\$, and a period (".") is also added. Once again WRD\$ is emptied (in the 2900 subroutine) and the story sprouts another section.

3600 From the list of potential heroes, SOmeone will be RaNDomly selected (FN R(SO)). A space (" ") will follow SOmeone's name, and then this material will be added to the story.

3700 First, the words "TRIED TO" are added to the text. Next, one of the five 'defense methods' is randomly selected and added to WRD\$ (at 3710, 3720, 3730, 3740, and 3750). Finally, the subroutine which begins at line 2900 adds the 'defense technique' to the story.

3710 through 3750 These lines contain the five 'defense techniques'.
3800 Two more words and a trailing space (BUT THEY) are added to the text. Next, one of five responses to SOmeone's 'defense technique' is RaNDomly chosen and the text is once again supplemented.

3810 through 3850 Each line contains one of the five responses to a 'defense technique'.

3900 There are five ways to announce the changing fortunes of battle. One of these five choices is randomly selected (FN R(5) GOTO....). The subroutine at
line 2900 again prevents right-hand margin overflow while adding the new material to the story.

3910 through 3950 These lines contain the five 'fortune-reversal lead-ins' mentioned at line 3900 .

4000 You were given an explanation of the "ON" statement in line 1050, but it deserves reiteration. First, line 2005 DEFined the FuNction $R(X)$ to be be equal to a RaNDon INTeger between 1 and X. The number 5 is substituted for ' X ', making $R(5)$ yield a random integer between one and five. The "ON" statement will cause the program to execute one of the five given subroutines, depending on the value of FN R(5). If the number generated is 3 , then line 4000 reads, in effect, ON 3 GOSUB (the 3rd line-number) which is line... 4030. After one of the five subroutines is performed, the program executes the subroutine beginning at line 2900 . Then RETURN completes the subroutine initiated at line 3060 .

4010 through 4050 These five lines contain the different 'attack methods' that SOmeone might employ. The information is stored in WRD\$ until it is PRINTed (by line 2900).

4100 A two word phrase, "SO THEY ", is stored in WRD\$ for later addition to the story. Next, the subroutine beginning at line 2900 is executed. This subroutine not only PRINTs the contents of WRD\$, but it prevents the contents of WRD\$ from being printed so that they breach the right margin. After one of the five 'attack results' is added to WRD\$, the subroutine which begins at line 2900 is executed. For all intents and purposes, the RETURN statement at line 4100 completes the program.

4110 through 4150 These lines contain the five 'results' of the 'attack method'.

Even as you read these words some of the illustrious characters whose names are stored in the data statements are slipping further into obscurity. Put in your own selection of names. This program is really an easy one to change and make your own. Change the data statements and print commands to your own fiendish specifications. You can save the new version under a new name and have both versions on diskette. Remember! What you change in the computer's memory does not change what is stored on the diskette unless you save the new version and give it the same name as the old version. It is sound practice to leave the original version unchanged on a different diskette and call your version Sci-Fi V1, Sci-Fi V2, etc. Have fun changing things around. It's the best way to learn.

11	REM	***		$* * *$
12	REM	***	SCI-FI	$* * *$
13	REM	***		$* * *$

14 REM $\mathrm{RE}^{*} * * * * * * * * * * * * * * * * * *$
15 REM
16 REM
20 GOSUB 1000: REM INSTS
30 GOSUB 2000: REM SETUP
40 GOSUB 3000: REM PLAY!
50 END
$1000:$
1001 REM *** INSTS
$1002:$

1010 TEXT: NORMAL: HOME
1020 UTAB 3: HTAB 13: PRINT "*** SCI-FI ***"
1030 UTAB 7: PRINT "THIS PROGRAM WILL PRODUCE LOTS OF FUNNY
LITTLE SCIENCE-FICTION STORI ES FOR YOUR READING PLEASURE -"
1040 PRINT: PRINT "YOU ARE GIUE N THE CHANCE TO ENTER SOME PERSONALLY RELEUANT INFORMAT ION IN HOPESOF MAKING THE ST ORIES MORE INDIUIDUAL."
1050 UTAB 23: INPUT "HIT RETURN WHEN READY TO CONTINUE: ":A NS $\$$
1990 RETURN
$2000:$
2001 REM *** SETUP
$2002:$
2005 DEF FN $R(X)=I N T(R N D)($ 1) $* X)+1$
2010 DIM 50\$(15):50 $=0$
2011 DIM PL\$(15):PL=0
2012 DIM MO\& (15):MD $=0$
2013 DIM HO\& (15):HO = 0
2015 READ 50\$: IF SO \& < > "END"
THEN $50=50+1: 50 \$(50)=$ 50事: GOTO 2015

2016	READ PL\#: IF PL\& < > "END"
	THEN PL = PL + 1:PL\$(PL)
PL末: GOTO 2016	
2017	READ MO\&: IF MO* < > "END"
THEN MO = MO + 1:MO\#(MO) =	
MO\#: GOTO 2017	
2018	READ HO*: IF HO\& < > "END"
THEN HO = HO + 1:HO\$(HO) $=$	
HO\$: GOTO 2018	
2020	data "ALEXANDER HAIG","RON
	ALD REAGAN","SUPER CHICKEN",
	"FATHER GUID SARDUCCI","A L
	ITTLE GIRL","AN INTERESTED 0
	NLOOKER", "SUPERMAN"
2021	DATA "END"
2025	data "SYRACUSE","NEW YORK",
	"EARTH", "THE UNITED STATES",
	"YOUR TOWN","LOS ANGELES","W
	ALLA-WALLA WASHINGTON","THE PR
	ESIDENT","THE EASTERN COAST"
$\begin{aligned} & 2026 \\ & 2030 \end{aligned}$	data end
	data "little green men","A
	CROWD OF ANGRY PEASANTS BEA
	RING torches", "boogey Men","
	ALIENS","IN-LAWS","SPACE EGG
	S","FLYING GOOKIES","ZOMBIES
	","RELIGIOUS FANATICS","ICKY
	THINGS"
2031	DATA "END"
2035	data "UENUS","MARS", "OUTER
	SPACE", "OUT OF OUR GALAXY","
	THE MOON","THE FOURTH DIMENS
	ION","THE NEGATIUE ZONE","A
	TIME WARP","THE STARS","PLUT
	口"
2036	DATA "END"
2100	HOME : UTAB 3: HTAB 13: PRINT
	"*** SCI-FI ***": UTAB 22: PRINT
	"PRESS RETURN AT ANY TIME."
2110	UTAB 7: PRINT "TYPE IN UP
	05 NAMES OF PEOPLE THAT
	WILL SAve the day : ": PRINT

2114 LET CO $=\varnothing$
2115 INPUT " ===> ":SO\$: IF SO\& <
\rangle "" THEN SO = 50 + 1:50中 (5
口) $=50$: $: C O=C O+1: I F C O<$
5 THEN 2115
2117 HOME: UTAB 3: HTAB 13: PRINT
"*** SCI-FI ***": UTAB 7
2120 PRINT "TYPE IN UP TO 5 NAME
5 OF PLACES THAT WILL BE
ATTACKED: ": PRINT
2124 LET CO =
2125 INPUT " === > " g PL\$: IF PL\$ 《
\rangle "" THEN PL $=P L+1: P L$ 串 $(P$
$L)=P L \neq: C O=C O+1: I F C O<$
5 THEN 2125
2127 HOME : UTAB 3: HTAB 13: PRINT
"*** SCI-FI ***": UTAB 7
2130 PRINT "TYPE IN UP TO 5 NAME
5 OF MONSTERS THAT WILL ATT
ACK: ": PRINT
2134 LET CO $=\varnothing$
2135 INPUT " $===>$ " $\mathrm{MD⿻}=\mathrm{D:} \mathrm{IF} \mathrm{MO} \mathrm{\&} \mathrm{<}$
\rangle "" THEN MO = MO + 1:MD\& (M
$\square)=$ MO\&:C口 = CO + 1: IF CO <
5 THEN 2135
2137 HOME : UTAB 3: HTAB 13: PRINT
"*** SCI-FI ***": UTAB 7
2140 PRINT "TYPE IN UP TO 5 NAME
5 OF PLACES THAT THEMONSTERS
COME FROM: ": PRINT
2144 LET CO = \emptyset
2145 INPUT "===> "肘事: IF HO\& <
> "" THEN HO = HO + 1:HO\& (H
口) = HO\&:CO = CD + 1: IF CD <
5 THEN 2145
2150 RETURN
2900 LET PT = 1
2905 PRINT MID\$ (MRD $2, P T, 1$): IF
MID\& (WRD\&,PT,1) = " " AND
PEEK (3G) > 30 THEN PRINT
2910 PT = PT + 1: IF PT < $=$ LEN
(WRD\$) THEN 2905

```
2990 RETURN
3000:
3001 REM *** PLAY
3002:
3010 GOSUB 3100: REM TITLE
3015 GOSUB 3200: REM PLACE
3020 GOSUB 3300: REM ACTION
3025 GOSUB 3400: REM MONSTER
3030 GOSUB 3500: REM PLACE
3035 GOSUB 3600: REM SOMEONE
3040 GOSUB 3700: REM DEFEND
3045 GOSUB 3800: REM TOO TOUGH
3050 GOSUB 3900: REM FINALLY
3055 GOSUB 3G00: REM SOMEONE
30G0 GOSUB 4000: REM DEFEND
3070 GOSUB 4100: REM THEY DIED
3075:
3077 PRINT
3080 UTAB 23: INPUT "HIT RETURN
    WHEN READY TO CONTINUE : ":A
    NS&
3085 GOTO 3010
3100 HOME : ON FN R(5) GOTO 311
    0.3120,3130,3140,3150
3110 UTAB 3: PRINT "*** FLASH! F
    LASH! FLASH! ***": UTAB 7: RETURN
3120 UTAB 3: PRINT "*** BULLETIN
    !!! ***": UTAB 7: RETURN
3130 UTAB 3: PRINT "*** ALERT !!
    ! ***": UTAB 7: RETURN
3140 UTAB 3: PRINT "*** SPECIAL
    NEWS BULLETIN ***": UTAB 7: RETURN
3150 UTAB 3: PRINT "*** TO ALL C
    ITIZENS ***": UTAB 7: RETURN
3200 WRD$ = PL$( FN R(PL)) + " ":
    GOSUB 2900: RETURN
3300 DN FN R(5) GOSUB 3310.3320
    ,3330.3340.3350: GOSUB 2900:
    RETURN
3310 WRD= = "WAS ATTACKED BY ": RETURN
```

3320 WRD中＝＂WAS EATEN BY＂：RETURN

3330 WRD $=$＂IS UNDER THE SPELL \square F＂：RETURN
3340 WRD $=$＂IS BEING INUADED BY ＂：RETURN
3350 WRD $=$＂IS DUER－RUN BY＂：RETURN
3400 WRD $=$ MO\＄$(F N R(M D))+"$＂ GOSUB 2900：RETURN
3500 WRD $=$＂FROM＂：GOSUB 2900：W $R D=H O \&(F N R(H O))+"$＂＂ GOSUB 2900：RETURN
360 WRD $=50$（ $\mathrm{FNR} \mathrm{R}(50))+$＂＂： GOSUB 2900：RETURN
3700 WRD $=$＂TRIED TD＂：GOSUB 29 D0：ON FN R（5）GOSUB 3710．3 $720.3730,3740,3750:$ GOSUB 29 O日：RETURN
3710 WRD $=$＂KILL THEM＂：RETURN

3720 WRD $=$＂FIGHT THEM＂：RETURN

3730 WRD $=$＂HOLD UP A CROSS＂：RETURN

3740 WRD $=$＂ATTACK AT DAWN＂：RETURN
3750 WRD $=$＂SHOOT THEM＂：RETURN

3800 WRD $=$＂BUT THEY＂：GOSUB 29 Q0：ON FN R（5）GOSUB 3810．3 $820.3830,3840,3850:$ GOSUB 29 DO：RETURN
3810 WRD $=$＝＂WERE TOO TOUGH．＂：RETURN
3820 WRD中＝＂KEPT COMING．＂：RETURN

3830 WRD $\$=$＂YELLED AND LAUGHED． ＂：RETURN
3840 WRD $=$＂SCREAMED FOR MORE．＂ ：RETURN
3850 WRD $=$＂SHOT BACK．＂：RETURN

```
3900 ON FN R(5) G0SUB 3910.3920
    ,3930.3940,3950: GOSUB 2900:
        RETURN
3910 WRD$ = "FINALLY, ": RETURN
3920 WRD$ = "LATER, ": RETURN
3930 WRD$ = "THEN ... ": RETURN
3940 WRD$ = "BUT THEN, ": RETURN
3950 WRD$ = "AFTER; ": RETURN
4000 ON FN R(5) GOSUB 4010,4020
    4030,4040,4050: GOSUB 2900:
        RETURN
4010 WRD& = "YELLED AT THEM, ": RETURN
4020 WRD& = "DROPPED WATER ON THE
    M, ": RETURN
4030 WRD$ = "EXPOSED THEM TD MEAS
    LES ": RETURN
4040 WRD& = "NUKED THEM, ": RETURN
4050 WRD$ = "SHOWED THEM RERUNS D
    F I LDUE LUCY, ": RETURN
4100 WRD方 = "SO THEY ": GOSUB 290
    0: ON FN R(5) GOSUB 4110.41
    20,4130.4140,4150: GOSUB 290
    0: RETURN
4110 WRD$ = "DIED.": RETURN
4120 WRD$ = "TURNED INTO LITTLE B
    ROWN LUMPS.": RETURN
4130 WRD$ = "PASSED AWAY.": RETURN
4140 WRD& = "LEFT FOR HOME,": RETURN
4150 WRD& = "UANISHED INTO NOTHIN
    GNESS.": RETURN
```


This game is designed to compel the user to define any object that is chosen. This process 'teaches' the computer a definition of up to fifty objects. Although each run starts with the same elementary knowledge, the user adds the information which makes it harder and harder to stump the computer. To see the "setup," list -2030. The only two objects which the computer "knows" are a car and a house. Line 2015 specifies that RA $\$(1)=$ car, and WA\$(1) = house. Line 2010 gives each of these variables fifty locations, so you can play for a long time. What the DIM statement does is to DIMension memory so that BA\$, WA\$, etc. will be able to contain up to fifty separate values. In other words, $\mathrm{BA} \$(1), \mathrm{BA} \$(2), \mathrm{BA} \$(3)$.... $\mathrm{BA} \$(50)$ each contain a distinct value. This program demonstrates writing to array tables and searching the arrays for matching strings. You could use the routines in this program to write educational programs and tests.

10 R	REM *******************
11 R	REM *** ***
12 R	REM ** APPLE LEARNER **
13 R	REM *** ***
14 R	*******************
15 R	REM
16 R	REM
20	GOSUB 1000: REM INSTS
30	GOSUB 2000: REM SETUP
40	GOSUB 3000: REM PLAY!
50	END
1000	:
1001	REM *** INSTS
1002	:
1010	TEXT: HOME NORMAL
1020	UTAB 3: HTAB 9: PRINT "\#**
	APPLE LEARNER ***"
1030	UTAB 7: PRINT "THIS IS A GA
	ME THAT HAS THE ABILITY TO
	LEARN. IT WILL ATTEMPT TO G
	UESS THE NAME OF AN QBJEC
	T THAT YOU PICK AT RAND
	OM."
1040	PRINT
1041	PRINT "WHENEVER YOU STUMP
	HE COMPUTER, YOU AREASKED AB
	OUT THE OBJECT YOU SELECTED.
	BYCOMPILING THIS INFORMATI
	ON, THE COMPUTER'LEARNS'."
1045	PRINT: PRINT
1046	PRINT "ENTER 'STOP' WHEN YO
	\square ARE DONE. "
1050	UTAB 23
1051	INPUT "HIT RETURN WHEN READ
	Y TO CONTINUE: "ANS*
1990	RETURN
2000)
2001	REM *** SETUP
2002	2
2010	DIM QU年(50), RI (50), WR (50), R
	A ${ }^{(50)}$, WA ${ }^{(50)}$
2015	QU中 (1) = "DOES IT MOVE ALONG
	$\begin{aligned} & \text { THE GROUND":RI(1) = } \begin{array}{l} \text { :WR(1) } \\ =\emptyset \end{array} \end{aligned}$

```
2020 RA$(1) = "CAR":WA$(1) = "HOU
    SE"
2030 FR = 2
2990 RETURN
3000:
3001 REM *** PLAY
3002:
3005 LI = 1
3010 HOME : UTAB 3: HTAB 9: PRINT
"*** APPLE LEARNER ***": UTAB
3015 PRINT "I KNOW OF "FR" OBJEC
    TS ...": PRINT
3020 PRINT : PRINT QU$(LI): INPUT
    " ? ":ANS$:ANS& = LEFT* (AN
    5#,1)
3030 IF LEFT& (ANS&,1) = "Y" THEN
    3100
3035 IF LEFT& (ANS$,1) = "N" THEN
    3200
3036 IF LEFT& (ANS&,1) = "S" THEN
    TEXT : END
3040 PRINT "PLEASE ANSWER 'YES'
    OR 'NO'...": PRINT : GOTO 30
    20
3100 IF RI(LI) THEN LI = RI(LI):
        GOTO 3020
3105 GU$ = RA$(LI): GOTO 3300
3200 IF WR(LI) THEN LI = WR(LI):
                GOTO 3020
3205 GU$ = WA$(LI): GOTO 3300
3300 PRINT "IS IT A ";GU$;
3310 INPUT " ? ";TA$:TA$ = LEFT#
        (TA$,1): IF TA$ = "Y" THEN PRINT
        : PRINT "I GOT IT !!!": CHR*
        (7): CHR$ (7): CHRक (7): FOR
        PA = 1 TO 1000: NEXT PA: GOTO
        3005
    3312 IF TA$ = "S" THEN TEXT : END
    3315 PRINT : PRINT : INPUT "WHAT
        WAS THE OBJECT?";NA$
```

3317 IF $F R=51$ THEN PRINT＂I C AN＇T REMEMBER THAT ONE，MY MEMORY SEEMS TO BE FULL．．．
＂：$F O R P A=1$ TD 1000：NEXT
PA：GOTO 3005
3320 PRINT：PRINT＂WHAT IS A QU
ESTION THAT I COULD USE TD
TELL THE DIFFERENCE BETWEEN
＂：PRINT GU\＆＂AND＂NA⿻⿱口口丨心：INPUT ＂？＂！Qub
3325 PRINT＂FOR＂NA事＂THE ANSWER IS WHAT＂：INPUT＂？＂：YN\＆： $Y N \&=\operatorname{LEFT}(Y N(1): I F Y N \$$ ＜$>$＂Y＂AND YN⿻ $<\gg N$
＂THEN 3325
3340 IF AN $=$＂Y＂THEN RI（LI）$=$ $F R: L I=F R: F R=F R+1$
3341 IF AN $=$＂N＂THEN WR（LI）$=$ $F R: L I=F R: F R=F R+1$
3345 QU串（LI）$=$ QU
3350 IF YN\＆＝＂Y＂THEN RA\＄（LI）＝ NA串：WA末（LI）＝GU\＄
3351 IF YNo＝＂N＂THEN RA末（LI）＝ GU末：WA末（LI）＝NA末
3355 GOTD 3005

This program is designed to interpret input, and from it, graph the user's biorhythms. You can accept the output to be as valid as you please, but don't expect the results to be testimony. Biorhythms, though fascinating, are still considered to be unscientific. There are several features of the program worth noting even if it won't predict the future:

Lines 2010 to 2025 set up a simple calendar printing routine. A few more lines and you could add leap years to it.

Line 3020 asks for a date and tells you exactly how to format the response.
Lines 3025-3028 'error check' the input. Error checking is a vital part of socalled user friendly programs.

Line 3140-3148 position the P, E and C characters into beautiful sine curves. Even if you have forgotten all your high school math you can try out the trig functions by plotting points to give a graphic representation of the function.

Did you recognize 6.28318 as 2 Pi ?
Running BIORHYTHM in the TRACE mode will show you very dramatically the FOR-NEXT loops in 3152 and 3208 that create the patterns.

The program uses complicated string functions and nested loops, so don't feel bad if it all looks like Relativity Theory. You can write a lot of programs which never get this complex.

10 REM $\mathrm{RE}^{* * * * * * * * * * * * * * * * * * * ~}$
11 REM *** ***
12 REM *** BIQRHYTHM ***
13 REM *** ***
14 REM $\mathrm{RE}^{*} \mathrm{R}^{*} * * * * * * * * * * * * * * * *$
15 REM
16 REM
18 GOSUB 45
20 GOSUB 1000: REM INSTS
30 GOSUB 2000: REM SETUP
40 GOSUB 3000: REM PLAY!
42 END
45 HOME : UTAB 4
$4 G$ PRINT "A GRAPH OF BIORHYTHMS IS COMPOSED OF THELETTERS C, E, I, AND P. EACH OF THESE IS";
47 PRINT " A REPRESENTATION OF D NE OF YOUR ";
48 PRINT "MEASURABLE BIORHYTHMS. "

50 FOR I = 1 TO 4: PRINT: NEXT : HTAB G
51 PRINT "I = INTELLECTUAL STATE "

52 PRINT: HTAB G
53 PRINT "E = EMOTIONAL STATE"
54 PRINT: HTAB G
55 PRINT "P = PHYSICAL STATE"
5 GRINT: HTAB G
57 PRINT "C = THE CROSSOVER POIN T"
58 FOR I = 1 TO E: PRINT: NEXT : INPUT "PRESS RETURN WHEN R EADY TO CONTINUE: ":AN
70 RETURN
$1000:$
1001 REM *** INSTS
$1002:$
1010 TEXT : NORMAL : HOME
1020 UTAB 3: HTAB 11: PRINT "*** BIORHYTHM ***"
1030 UTAB 7

1031 PRINT "THIS PROGRAM WILL GR APH OUT YOUR UNIQUE BIORHYTH MIC CYCLES, EITHER ON THE SC REENOR TO A PRINTER
1040 UTAB 1G: PRINT "SHOULD I OU TPUT TO:
1042 PRINT: PRINT " S)CR EEN
-OR-
1045 PRINT " P)RINTER
1050 UTAB 22
1051 INPUT "WHICH DO YOU WANT (5 /P) ? "\#ANS中:ANS末 = LEFT\& (ANS क, 1): IF ANS \& > "S" AND ANS \& < > "P" THEN 1050
10GD IF ANS $=$ "S" THEN RETURN
1065 UTAB 22: CALL - 958: INPUT "IN WHICH SLOT IS YOUR PRINT ER?":SLOT\#:SLOT = VAL (SLOT ()): IF SLOT < 1 OR SLDT > 7 OR SLOT < > INT (SLOT) THEN 1 065
1990 RETURN
$2000:$
2001 REM *** SETUP
$2002:$
$2010 \mathrm{DIM} A(12), B(12), T(3), A(21)$
$2015 \mathrm{C}=\mathrm{F}=$ "JANFEBMARAPRMAYJUNJULA UGSEPOCTNOUDEC"
2020 FOR $I=1$ TO 12: READ $A(I):$ NEXT: DATA $0.31,59,90,120$. $151,181,212,243,273,304,334$
$2025 \mathrm{FOR} I=1 \mathrm{TO}$ 12: READ $\mathrm{B}(\mathrm{I}):$ NEXT: DATA $31,28,31,30,31$. $30,31,31,30,31,30,31$
2990 RETURN
$3000:$
3001 REM *** PLAY
$3002:$
3010 HOME: UTAB 3: HTAB 11: PRINT "*** BIORHYTHM ***"

3015	INPUT "WHAT IS YOUR NAME? \#N\%
3020	PRINT: PRINT "WHAT IS YOUR
	BIRTHDATE? ": INPUT "MM, DD.
	YYYY) "\#M, ${ }^{\text {P, }}$ Y
3025	IF M < 1 OR M > 12 THEN PRINT
	"INCORRECT MONTH":ER = 1
3026	IF D < 1 OR $\mathrm{D}>31$ THEN PRINT
	"INCORRECT DAY":ER = 1
3027	IF Y < 1900 DR $Y>1999$ THEN
	PRINT "INCORRECT YEAR":ER =
	1
3028	IF ER THEN ER $=0:$ GOTD 302
	\square
3030	PRINT: PRINT "WHAT IS THE
	START DATE?": INPUT "MM, DD, Y
	YYY "\#M1,DO,Y1
3035	IF M1 < 1 OR M1 > 12 THEN PRINT
	"INCORRECT MONTH":ER = 1
3036	IF DO < 1 OR D 031 THEN PRINT
	"INCORRECT DAY":ER = 1
3037	IF Y1 < 1900 THEN PRINT "I
	NCORRECT YEAR":ER = 1
3038	IF ER THEN ER = © GOTO 303
	θ
3040	PRINT: INPUT "HOW MANY DAY
	(Z) THEN 3040
3045	$W=D 0: W 1=M 1: W 2=Y 1: W 3=$
	Z
3050	$J=A(M)+D: D 1=365-J+$
	$((J)=G 0)$ AND $(Y / 4=$ INT
	$(Y / 4))$):D2 $=365 *(Y 1-1$
	$Y+1)): E=0: \operatorname{FOR} T=Y+1$
	T0 Y1-1:E $=E+(T / 4=$
	INT (T / 4)): NEXT T
3055	$D 3=A(M 1)+D D: D 3=D 3+(1$
	$Y / 4=\operatorname{INT}(Y / 4))$ AND (D
	$3>=5(0)): D 4=D 1+D 2+D$
	$3+E$
3056	IF D4 < © THEN PRINT "STAR
	T DATE BEFORE BIRTH DATE": GOTO
	3030

```
3104 P1 = D4 - INT (D4 / 23) * 2
    3
3108 E1 = D4 - INT (D4 / 28) * 2
    8
3112 C1 = D4 - INT (D4 / 33) * 3
    3
311G IF ANS旃 "P" THEN PRINT CHRD
(4)"PR#"SLOT: PRINT CHRक (G
)"80N"
3117 PRINT TAB（ 22）＂BIORHYTHM C YCLES＂：PRINT TAB（25）＂－．－ FOR－－－＂：PRINT TAB（ \(22+(\) 17 －LEN（Nक））／2）N
3118 PRINT TAB（ 25）：MID事（C \(⿻=\) ＊ \(\mathrm{M}-2,3\) ）＂＂D＂，＂Y：PRINT
3120 PRINT MID＊（C\＆，3＊M1－2，
3）＂＂Y1＂
D）（＋）＂
3124 FOR T \(=1\) TO Z
\(3128 \mathrm{P} 2=\mathrm{P} 1+\mathrm{T}-\mathrm{INT}((\mathrm{P} 1+\mathrm{T})\) ／23）＊ 23
\(3132 E 2=E 1+T-I N T((E 1+T)\) ／28）＊ 28
\(3136 C 2=C 1+T-I N T((C 1+T)\) ／33）＊ 33
\(3140 \mathrm{P} 3=\mathrm{INT}(11.5+10 * 5 I N\) （P2＊6．28318／23））
\(3144 E 3=I N T(11.5+10 * 5 I N\) （E2＊6．28318／28））
3148
INT（11．5＋10＊SIN （C2＊6．28318／33））
3152 FOR I＝ 1 TO \(21: A \phi(I)=" "\) ：NEXT
3156 A事（P3）\(=" P "\)
3160 IF A⿻⿱口口丨心（E3）＜＞＂＂THEN 318 0
3164 A事（E3）＝＂E＂ 3168 IF A⿻三丨口（C3）＜＞＂＂THEN 318 8
3172 A⿻（C3）＝＂C＂：GOTD 3192
3180 A⿻⿱口口丨心（E3）＝＂＊＂：GOTD 3168
3188 A⿻⿱口口丨心（C3）＝＂＊＂：GOTO 3192
```


3192 IF $A ⿻ ⿱ 口 口 丨 寸 ~(11)=" ~ " T H E N ~ A ⿻ ⿱ 口 口 丨 刃(11) ~$
$=" I "$
3196 IF DD $=1$ THEN PRINT MID
(C\&,3 * M1 - 2,3)" ": GOTO
3208
3198 PRINT " ":
3208 PRINT RIGHT\& (" $"+5 T R \$$
(DD) 2)" ": FOR
$I=1$ TO 21: PRINT A $=(I):$ NEXT
: PRINT
3212 IF Y1 - ($(\operatorname{INT}(Y 1 / 4))$ *
$4)=\emptyset$ THEN $B(2)=29$
$3224 \mathrm{DO}=\mathrm{DO}+1: \mathrm{IF} \mathrm{DD} \boldsymbol{\mathrm { O }} \mathrm{B}(\mathrm{M1})$ THEN
$D D=1: M 1=M 1+1$
3244 IF M1 > 12 THEN M1 $=1: Y 1=$
$Y 1+1$
3260 NEXT T
3300 IF ANS $=$ "P" THEN PRINT CHR
(4) "PR\#\#"
3990 RETURN

This classic game requires that you connect five squares either vertically, horizontally, or diagonally. Though not much of a challenge, the game is good for your ego. The graphics are fairly basic, so let's take a closer look. First, type: LIST-2025. Experiment with the color, the line length and location, and the FOR statement. After you are done analyzing those lines, type: LIST -3050. Most noteworthy are lines 3010-3021. Line 3010 asks you to input the desired column NUMBER, but the variable (ANS\$) is for numbers and characters. Any variable that ends with a dollar-sign (\$) is called a string and is not capable of having any mathematical functions performed upon it. The reason the variable in 3010 is a string variable is that the person choosing the column number might accidentally hit a letter instead of a number. If the variable in 3010 was ANS, and an I were input in place of 1 , the program would 'crash'. Each character has a corresponding numeric value, so a letter can be redefined as a numeric. Line 3020 converts the string ANS\$ to the numeric ANS. Line 3021 then makes mathematical comparisons based upon the input. You might want to experiment with the VAL command to see how computers alphabetize lists of words.
10 REM $* * * * * * * * * * * * * * * * * * *$
11 REM *** ***
12 REM *** CONNECT FIUE ***
13 REM *** ***
14 REM *******************
15 REM
16 REM
20 GOSUB 1000: REM INSTS
30 GOSUB 2000: REM SETUP
40 GOSUB 3000: REM PLAY!
50 GOSUB 4000: REM !END!
GO END
1000:
1001 REM *** INSTS
$1002:$
1010 TEXT : NORMAL : HOME
1020 UTAB 3: HTAB 10: PRINT "*** CONNECT FIUE ***"
1030 UTAB 7: PRINT "THE OBJECT 0 F The game is to get five of YOUR PIECES IN A ROW, EITHER VERTICALLY OR HORIZONTALLY."
1035 PRINT
1040 PRINT "WHEN IT IS YOUR TURN TO MOVE, ENTER THE NUMBER 0 F THE COLUMN YOU WISH TO DRO P YOUR PIECE INTO. "
1045 PRINT
1050 PRINT "AFTER YOU MOUE, I WI LL TAKE A TURN. THE FIRS
t one to connect five is the WINNER. "
10ED UTAB 22: INPUT "PRESS RETUR N WHEN READY TO CONTINUE : " ;ANS
1990 RETURN
$2000:$
2001 REM *** SETUP
$2002:$
2010 GR
2011 COLOR = 0
2012 FOR I = 0 TO 35
2013 HLIN 0.35 AT I
2014 NEXT

```
2015 COLOR= 15
2016 FOR I = 0 TO 35 STEP 5
2017 HLIN @,35 AT I: ULIN 0.35 AT
    I
2018 NEXT I
2020 COLOR= G
2021 ULIN 35,39 AT 3
2022 HLIN 2.4 AT 39
2023 PLOT 2,36
2024 HLIN 7:9 AT 35: HLIN 7:9 AT
    37: HLIN 7,9 AT 39
2025 PLOT 9,36: PLOT 7,38
2030 HLIN 12,14 AT 35: HLIN 12:1
    4 AT 37: HLIN 12,14 AT 39: PLOT
    14:36: PLOT 14:38: HLIN 17:1
    9 AT 37: ULIN 35,39 AT 19: ULIN
    35,36 AT 17
2040 HLIN 22,24 AT 35: HLIN 22,2
    4 AT 37: HLIN 22,24 AT 39: PLOT
    22,36: PLOT 24,38: HLIN 27,2
    9 AT 35: HLIN 27,29 AT 37: HLIN
    27,29 AT 39
2050 PLOT 27,38: PLOT 29.38: PLOT
    27,36: HLIN 32,34 AT 35: PLOT
    34,36: ULIN 37,39 AT 33
2900 DEF FN C(X) = (X - 1) * 5 +
    1
2910 DEF FN P(X) = (X - 1) * 5 +
    9
2990 RETURN
3000:
3001 REM *** PLAY
3002:
3010 HOME :PL = 1: INPUT "YOUR M
    OVE (COLUMN 1-7) : ";ANS*
3020 ANS = UAL (ANS$)
3021 IF ANS < 1 OR ANS > 7 OR AN
    S < > INT (ANS) THEN HOME
    : PRINT "PLEASE SELECT A NUM
    BER FROM 1 TO 7 : ": FOR A =
    1 TO 1000: NEXT A: GOTO 3010
3030 AX = FN C(ANS)
```

```
3040 IF SCRN( AX,1) < > THEN
        HOME : PRINT "THAT COLUMN I
        5 FULL...":FOR A = 1 TO 10
        00: NEXT A: GOTO 3010
3050 FOR J= 1 TO 7: COLOR= FN
        P(PL):JX = FN C(J): FOR K =
        JX TO JX + 3: HLIN AX,AX + 3
        AT K: NEXT K
3055 IF J = 7 THEN 3080
3060LX = FN C(J + 1): IF SCRN(
    AX,LX)< > 12 THEN J = 7: GOTO
    3080
3065 COLOR=0
3070 FOR K = JX TO JX + 3: HLIN
        AX,AX + 3 AT K: NEXT K
3080 NEXT J
3090 FOR I = 1 TO 7: FOR J = 1 TO
        3: FOR K = JTO J + 4:IX = FN
        C(I):KX = FN C(K)
3100 IF SCRN( IX,KX) < > FN P
        (PL) THEN K = J + 4: NEXT K:
        GOTD 3110
3105 NEXT K: RETURN
3110 NEXT J.I
3120 FOR J = 1 TO 7: FOR I = 1 TO
        3: FOR K = I TOI + 4:KX = FN
        C(K):JX = FN C(J)
3130 IF SCRN( KX,JX) < > FN P
        (PL) THEN K = I + 4: NEXT K:
        GOTO 3140
3135 NEXT K: RETURN
3140 NEXT I,J
3150 IF PL = 2 THEN PL = 1: GOTO
        3010
3160 PL = 2:ANS = INT ( RND (1) *
        7) + 1:AX = FN C(ANS): IF SCRN(
        AX,1) < > 12 THEN 3160
3170 GOTO 3050
4000:
4001 REM *** ALL DONE
4002:
```

4010 HOME: PRINT: PRINT "THE G
AME IS QUER !!!": PRINT "THE WINNER IS ..."
4020 IF PL $=1$ THEN PRINT "YOU
!!!": RETURN
4030 PRINT "ME !!!": RETURN
\rangle

This is definitely a thinking man's game. You are given clues in an attempt to guess a three-number puzzle. Load the program. FN R(10) generates a random integer between 0 and 9 . How and why will be discussed elsewhere in the book, for now, just accept that this is true. N1 is any digit between 0 and 9. N2 is any digit between 0 and 9 exept N 2 cannot equal N1. N3 is also a number between 0 and 9. N3 cannot be equal to N2 or N1. The result is that the threedigit number represented by $\mathrm{N} 1 / \mathrm{N} 2 / \mathrm{N} 3$ will be a random three-digit number comprised of three different digits. Lines 3035-3037 separate your single threedigit guess into three separate guesses (G1, G2, and G3). Here's how. When any number is converted to an integer, the portion of the number which is to the right of the decimal point is truncated (cut off). Here are a few examples: INT 3.4 is 3 , INT 9.989 is 9 , INT 562.3 is 562 , INT 0.3 is 0 . Taking line 3035, assume that the guess was 567.567 divided by 100 is 5.67 . When converted to an INTeger, 5.67 becomes $5(\mathrm{G} 1=5)$. Line 3036 takes 567, subtracts (5 multiplied by 100), divides the result (67) by 10, and converts 6.7 into the INTeger. Now G1 $=5$ and $\mathrm{G} 2=6$. Lastly, 3037 takes 567 (ANS) and sutracts from it (5 (G1) times 100 plus 6 (G2) times 10) or 560. The result (567-560) is now stored in G 3 . So now $\mathrm{G} 1=5, \mathrm{G} 2=6$, and $\mathrm{G} 3=7$. Statistically, even when you are unlucky, the solution can be derived in no more than seven guesses. You've been challenged, now go to it!

10 REM $* * * * * * * * * * * * * * * * * * * *$
11 REM $* * * * * * *$
12 REM $* * *$ DIGITS $* * *$
13 REM *** ***
14 REM $H^{*} H^{*} H^{*} H^{*} * * * * * * * * * * * * * *$
15 REM
$1 G$ REM
20 GOSUB 1000: REM INSTS
30 GOSUB 2000: REM SETUP
40 GロSUB $3000:$ REM PLAY!
50 GDSUB $4000: ~ R E M$!END!
G0 END
1000
1001 REM *** INSTS
$1002:$
1010 TEXT: NOFMAL: HOME
1020 UTAB 2: HTAB 13: PRINT "*** DIGITS ***"
1030 VTAB 5
1031 PRINT "I WILL THINK OF A NU MBER BETWEEN 012 ANDG87. EA CH DIGIT IN THE NUMBER WILL BE DIFFERENT FRDM THE DTHER TWD."
1035 PRINT
$10 \triangle 0$ PRINT "THE OBJECT DF THE GA ME IS TO GUESS THE SOLUTIDN IN AS FEW TRIES AS POSSIBLE -"
1050 UTAB 23: INPUT "HIT RETURN WHEN READY TD CONTINUE: ":A NS ${ }^{\text {o }}$
10G0 HDME: UTAB 2: HTAB 13: PRINT "*** DIGITS ***": VTAB 5
1070 PRINT "AFTER EACH GUESS, I IIIL PRINT OUT A HINT LIN E AS FOLLOWS: "
1075 PRINT
1080 PRINT "シFOR EACH DIGIT CORR ECT AND IN THE CORRECT POSITIDN, I WILL PRINT AN ' X * "

1085 PRINT

1090	PRINT ">FOR EACH DIGIT CORR ECT BUT NOT IN THE CORRECT POSITION, I WILL PRINT AN 'O '."
1095	PRINT
1100	PRINT ">FOR EACH TOTALLY IN
	CORRECT DIGIT, I WILL PRI
	NT A '-'.
1105	PRINT
1110	PRINT "PLAY WILL CONTINUE U
	NTIL YOU GUESS THE NUMBER.
	TO QUIT EARLY, SIMPLY HIT T
	HE RETURN KEY FOR yOUR GUES
	5."
1115	UTAB 23
1120	INPUT "HIT RETURN WHEN READ
	Y TO CONTINUE : ":ANS
1130	HOME : UTAB 6
1140	PRINT "HERE IS A TABLE TO H
	ELP YOU UNDERSTAND THE INST
	RUCTIONS."
1145	PRINT : PRINT
1150	PRINT "ANSWER GUESS
	hint line "
1160	PRINT
1165	PRINT
1170	PRINT " 065 703
	O--
1171	PRINT
1175	PRINT " 562463
	X--
1176	PRINT
1180	PRINT " 918 890
	00-": PRINT
1185	PRINT " 390 305
	XD-": PRINT
1190	PRINT " 27121
	XOO": PRINT
1195	PRINT " 425780
	-": PRINT
1200	INPUT "PRESS RETURN WHEN RE
	ADY to continue : "iAnS§

```
1990 RETURN
2000:
2001 REM *** SETUP
2002:
2010 DEF FN R(X) = INT ( RND (
1) * X)
2020 N1 = FN R(10)
2021 N2 = FN R(10): IF N2 = N1 THEN
2021
2022 N3 = FN R(10): IF N3 = N1 OR
    N3 = N2 THEN 2022
2990 RETURN
3000:
3001 REM *** PLAY
3002:
3010 HOME: UTAB 3: HTAB 13: PRINT
    "*** DIGITS ***": UTAB 7
3020 PRINT "OKAY, I'UE GOT A NUM
        BER...": PRINT
3030 INPUT "WHAT IS YOUR GUESS?
        ";ANS$: IF ANS$ = "" THEN RETURN
3031 IF LEN (ANS&) < > 3 THEN
        PRINT "TYPE ONLY THREE DIGI
        TS PLEASE": GOTO 3030
3032 ANS = UAL (ANS$): IF ANS<
        0 OR ANS > 999 THEN PRINT "
        TYPE ONLY THREE DIGITS PLEAS
        E": GOTO 3030
3035 G1 = INT (ANS / 100)
3036 G2 = INT ((ANS - G1 * 100) /
        10)
3037 G3 = ANS - (G1 * 100 + G2 *
        10)
3040 IF G1 = G2 OR G1 = G3 OR G2
        = G3 THEN PRINT "TYPE THRE
        E DIFFERENT DIGITS PLEASE.":
        GOTO 3030
```



```
3051 IF G1 = N1 THEN CP = CP + 1
3052 IF G2 = N2 THEN CP = CP + 1
3053 IF G3 = N3 THEN CP = CP + 1
```

```
3055 IF G1 = N2 OR G1 = N3 THEN
    CD = CD + 1
305G IF G2 = N1 OR G2 = N3 THEN
    CD = CD + 1
3 0 5 7 \text { IF GS = NI OR GS = N2 }
    CD = CD + 1
30G0 MI = 3-CP - CD
30G5 PRINT "FOR YOUR GUESS DF "G
    1:G2:G3", I HINT ":
3070 IF CP > O THEN FOR I = 1 TO
    CP: PRINT "X": NEXT
3071 IF CD > O THEN FOR I = 1 TO
    CD: PRINT "口":# NEXT
3072 IF MI > 0 THEN FOR I = 1 TO
    MI: PRINT "-": NEXT
3075 PRINT : PRINT :NG = NG + 1:
        IF CP = 3 THEN RETURN
3080 GOTO 3030
4000:
4001 REM *** END
4002:
4010 PRINT "THE GAME IS QUER...
    ": PRINT
4015 IF CP = 3 THEN PRINT "YOU
        GUESSED IT IN ONLY "NG" TRIE
        5 ! "
4020 IF CP < 3 THEN PRINT "THE CORRECT ANSWER WAS"N1:N2:N3 4990 RETURN
```


1

To play this game, you should have paper and pencil. You travel through an unseen maze of caverns searching for the Grue. As any good spelunker will tell you, drawing a map will prevent you from making the same mistakes over and over again. In other words, draw a map as you go along. There are no color graphics used in this program, but there are some other interesting features. You may ask, "How come I get different responses each time I run the program?" and here's why. Lines 2100 through 2130 assign certain variables a RANDOM value. Beginning at 3020, this becomes relevant. One of four messages is printed. Which one it is, depends on the RaNDom values of the four variables (EX, P1, B1, GU). Line 3026 reveals that on each move you have a one in fifteen chance of experiencing an earthquake. To paraphrase line 3026: if a RaNDom INTeger between 0 and 14 happens to be equal to 4 , then PRINT (BELL\$ causes the computer to emit a ringing sound) \lll EARTHQUAKE >>>. Line 3030 really begins each turn. As you go through the program, you will note that the execution of most of the lines depends, either directly or indirectly, on the value of a randomly generated integer.

11 REM ${ }^{2} * * * * * *$
12 REM *** GRUE STEW ***
13 REM *** ***

15 REM
16 REM
20 GOSUB 1000: REM INSTS
30 GOSUB 2000: REM SETUP
40 GOSUB 3000: REM PLAY!
50 GOSUB 4000: REM !END!
GO END
$1000:$
1001 REM *** INSTS
$1002:$
1010 TEXT : NORMAL : HOME
1020 UTAB 3: HTAB 12: PRINT "*** GRUE STEW ***"
1030 UTAB 7: PRINT "IN THIS GAME - YOU ARE A BRAVE HUNTER.

YOU ARE ALSO UERY HUNGRY. 5
0 , YOU DECIDE TO GO 'GR UE' HUNTING, A GRUE, ASEVER YONE KNOWS, IS THE KEY INGRE DIENT INGRUE STEW."
1040 PRINT: PRINT "YOU ARE GOIN G TO ENTER A SERIES DF UNDERGROUND CAVES. IN SEARCH OF THE STEWBASE, THE GRUE,"

1050 PRINT: PRINT "IF YOU CAN B AG A GRUE, AND GET OUT OF THE CAVES, THEN YOU WILL GET YOUR STEW (AND WIN THE GAM E!)."
1060 VTAB 23: INPUT "HIT RETURN WHEN READY TO CONTINUE: ":A NS ${ }^{\text {W }}$
1070 HOME: UTAB 3: HTAB 12: PRINT "*** GRUE STEW ***": UTAB 7

1180	PRINT "THERE ARE BOTTOMLESS PITS. IF YOU FALL into one OF THESE YOU'LL NEVER GET UT!"
1190	PRINT : PRINT "OF COURSE TH
	ERE IS THE GRUE HIMSELF.
	THOUGH NOT AN AGGRESSIUE CRE
	ATURE, HE WILL EAT YOU IF
	YOU COME TOO CLOSE."
1200	PRINT : PRINT "AND THERE AR
	E EARTHQUAKES THAT MOVE
	THINGS AROUND IN THE CAVES (
	bATS, PITS, THE GRUE, AND TH
1210	UTAB 23: InPut "HIT RETURN
	WHEN READY TO CONTINUE : ":A
	NS ${ }^{\text {a }}$
1990	RETURN
2000	:
2001	REM *** SETUP
02	:
2005	BELL ${ }^{\text {¢ }}$ = CHR¢ (7)
2010	DIM RO\& (20), TR(20,4)
2015	FOR I = 1 TO 20: READ ROQ (I
): NEXT
2020	DATA YOU ARE IN A SMALL
	ROOM WITH ROCKS AND DEBRIS
	SCATTERED EVERYWHERE.
2021	DATA DUCK YOUR HEAD IN
	HERE; AS LARGE ROCK STALA
	CTITES HANG FROM THE CEILING
2022	data the room here slop
	ES DOWNWARD.
2023	DATA THIS ROOM IS UERY S
	MALL: BUT I THINK WE CAN MAK
	E IT Through ok.
2024	DATA THIS IS A UERY LAR
	GE ROOM WITH A LARGE BOULDE
	R IN THE CENTER OF IT.
2025	data this is the center of
	a narrow passage that conn
	ECTS OTHER ROOMS.

2026 DATA THIS PASSAGE IS VERY LOW: BUT IF WE CRAWL WE CAN MAKE IT.
2027. DATA THIS IS A VERY DIRTY ROOM: IT HAS BEEN PARTIALL Y FILLED IN BY THE LAST EART H- QUAKE THAT HIT.
2028 DATA THIS ROOM IS ABOUT AVERAGE SIZE: BUT IS FILLED WITH A PUNGENT AROMA THAT I 5 UERYNAUSEATING.
2029 DATA YOU ARE IN A SMALL PA SSAGEWAY.
2030 DATA YOU ARE IN A SMALL PA SSAGEWAY.
2031 DATA YOU ARE IN A SMALL PA SSAGEWAY.
2032 DATA YOU ARE IN A SMALL PA SSAGEWAY.
2033 DATA YOU ARE IN A SMALL PA SSAGEWAY.
2034 DATA YOU ARE IN A SMALL PA SSAGEWAY.
2035 DATA A SMALL HOLE IN TH E CEILING LETS LIGHT FROM O UTSIDE THROUGH ... BUT YOU W OULD NEUER FIT THROUGH IT.
2036 DATA SOMEONE HAS LEFT A L IGHTED TORCH ON THE WALL AND IT ILLUMINATES YOUR PASSAGE

2037 DATA A RIUULET OF WATER SL OWLY TRICKLES FROM A HOLE IN THE WALL.
2038 DATA A SMALL HOLE TO YOUR LEFT ATTRACTS YOUR ATTENTION : BUT IT IS TOO SMALL TO BE OF ANY CONCERN.
2039 DATA YOU ARE IN A LOW DEPRESSION IN THE CENTE R OF A MEDIUM-SIZED ROOM.
$2050 \mathrm{FOR} I=1 \mathrm{TO} 20: F=0$

```
2055 FOR J = 1 T0 4: GOSUB 2955:
    F=F + TR(I;J): NEXT J: IF
        NOT F THEN 2055
2075 NEXT I
2100 YO = INT (RND (1) * 20) +
    1
2105 GU = INT ( RND (1) * 20) +
    1
210G IF GF THEN GU = - 1
2110EX = INT (RND (1) * 20) +
    1
2115 B1 = INT ( RND (1) * 20) +
    1
2120B2=INT (RND (1) * 20) +
    1
2125 P1 = INT ( RND (1) * 20) +
    1
2130P2 = INT (RND (1) * 20) +
    1
2135 RETURN
2955 IF INT ( RND (1) * 3) + 1 =
    2 OR TR(I&J) THEN RETURN
2960 RO = INT ( RND (1) * 20) +
    1: IF RO = I THEN 2955
29G1 DI = INT ( RND (1) * 4) + 1
        : IF TR(RO,DI) THEN 2955
29G5 TR(I,J) = RO:TR(RO,DI) = I
2990 RETURN
3000:
3001 REM *** PLAY
3002:
3010 HOME : UTAB 3: HTAB 12: PRINT
    "*** GRUE STEW ***": UTAB 7
3015 PRINT : PRINT RO&(YO): FOR
    I = 1 TO 10:XX = PEEK ( - 1
    G336): NEXT I
3020 FOR I = 1 TO 4:CO = TR(YO,I
    )
3021 IF CO = EX THEN PRINT BELL
    $"EXIT NEARBY ..."
3022 IF CO = GU THEN PRINT BELL
    &"I SMELL THE GRUE !!!"
```

3023 IF $C O=B 1$ OR $C O=B 2$ THEN PRINT BELL\＆＂FLAP．．．FLAP．．． FLAP ．．．＂
3024 IF $C O=P 1$ OR $C O=P 2$ THEN PRINT BELL\＆＂I FEEL A DRAFT
！！！＂
3025 NEXT
3026 IF INT（RND（1）＊15）$=4$ THEN PRINT BELLक＂く＜＜EARTH QUAKE＞＞＞＂：GOSUB 2105：GOTO 3015
3030 PRINT：INPUT＂MOUE OR SHOO T？＂：ANS串：IF ANS $=$＂S＂THEN 3500
3035 IF ANS \＆＜$>$＂M＂THEN PRINT ＂TYPE IN＇M＇OR＇S＇．．．＂：GOTD 3030
3040 INPUT＂WHICH WAY？＂；ANS末：FOR $I=1$ TO 4：IF ANS $\quad<>$ MID中 （＂NESW＂，I，1）THEN NEXT：PRINT
＂ENTER＇N＇，＇E＇，＇W＇，OR＇S＇
＂：GOTO 3030
3045 IF NOT TR（YO，I）THEN PRINT BELLक＂YOU CANNOT GO THAT WAY ．．．＂：GOTO 3015
3050 PRINT＂OK ．．．＂：YO＝TR（YO，I ）
3051 IF YO＝EX THEN WL $=0:$ RETURN
3052 IF YO＝GU THEN WL＝1：RETURN
3053 IF YO＝P1 OR YO＝P1 THEN WL＝2：RETURN
3054 IF YO＜$\quad \mathrm{B} 1$ AND YO＜＞B 2 THEN 3015
3055 PRINT＂BATS HAVE YOU ！！！＂：PRINT ＂THEY＇RE LIFTING YOU UP ！！！＂ ：PRINT＂OHHHHH，WHERE ARE W E NOW ？？？＂：YO＝INT（ RND（ 1）＊20）＋1：GOTO 3015

3500 INPUT＂SHOOT WHICH WAY？＂：A NS末：FOR I＝ 1 TO 4：IF ANS ＜＞MID\＄（＂NESW＂，I，1）THEN NEXT ：PRINT＂TYPE IN＇N＇， ＇E＇，＇W＇，OR＇S＇＂：GOTO 3030

3505 IF NOT TR（YO，I）THEN PRINT BELL末＂CLUNK！＂：PRINT＂THE AR ROW BOUNCED OFF THE WALL．＂：GOTO 3015
3510 IF TR（YO，I）＝GU THEN PRINT BELLकBELL事＂OUCH ！！！＂：PRINT ＂YOU BAGGED A GRUE ！！！＂：PRINT ＂NOW TO FIND THE WAY OUT ＂：GF＝1：GU＝－1：GOTO 301 5
3520 PRINT BELL末＂THE ARROW MISSE D THE GRUE ！！！＂：GOTO 3015

$4000:$
4QQ1 REM＊＊＊END
$40 め 2:$
4010 IF $W L=0$ AND GF THEN PRINT ＂YOU HAVE REACHED THE EXIT W ITH YOUR＂：PRINT＂GRUE ！！！Y OU WILL HAUE A FILLING SUPPE R＂：PRINT＂TONIGHT FOR SURE ！！！＂：RETURN
4015 IF WL $=\emptyset$ THEN PRINT＂YOU HAVE REACHED THE EXIT WITHOU T＂：PRINT＂ANY GRUE ！！！YOU ARE SURE TO STARUE ．．＂：RETURN

4020 IF WL $=1$ THEN PRINT＂YOU BUMPED INTD THE GRUE ！！！＂：PRINT ＂HE ATE YOU BEFORE YOU COULD MOUE ！！＂：RETURN
4025 IF WL $=2$ THEN PRINT＂YOU FELL INTO A PIT ！！！＂：PRINT ＂YOU FELL A LOOOOOONG WAY ．． －＂：RETURN

A clever premise overshadows an interesting game. The IRSman serves as an excellent mathematical teaching device, while being entertaining and challenging. Everyone wants to beat the IRS, now here's your chance! To play, choose a number (we'll call it ' X '), and the digits 1 through X will appear. Each time you remove a number from the list, all of the factors of that number (which are still on the list) go to the IRSman. The object is to garner as much money as possible, while being as stingy as possible with the IRSman. If you play the number $12,1-2-3-4-5-6-7-8-9-10-11-12$ will appear on the screen. If you begin play by selecting 12 , the IRSman will get $6,2,4,3$, and $1(6 \times 2=12$, $4 \times 3=12,1 \times 12=12$) for a score of 16 to your 12 . The board will now look like this: 11109875 . As you will note, the only remaining number on the list which has a factor, is 10 (the remaining factor is 5). Remember, to remove a dollar amount (a number) from the list, there must be a factor to go to the IRSman. When you remove 10 from the above example, the score will be 22 $(12+10)$ for you, and $21(16+5)$ for the IRSman. But look . . . the list now reads: 11987 . None of these numbers has a factor left on the list, so they all revert to the IRSman. The final score would be 22 for you, and 56 $(21+11+9+8+7)$ for the IRSman. If you choose 6 before choosing 12 , the IRSman scores for $3 \times 2=6$, (5 dollars) and 1×6 (1 dollar) for a total of 6 dollars for him and 6 dollars for you. The digits may only be used once, so $6,3,2$, and 1 are removed from the list. Now when you choose 12, the IRSman only gets 4 dollars $(4 \times 3=12)$. Now the score is $18(6+12)$ for you, and $10(6+4)$ for the IRSman. Note that 11 is stuck because the only factors of 11 are 11 and 1 . Don't waste the universal factor (1) on just any number. It should be used first, to remove the highest prime number from the list. A prime number is one that is only divisible by itself and 1 . Examples are 1,2,3,5,7,11,13,17,19,23, etc. To circumvent the loss of 11 , choose this number before choosing 6 . There are
many ways to thwart the IRSman, but you must really try. Remember that all of the unused numbers (at the end of the game) are added to the score of the IRSman. The maximum score you can achieve when choosing 1 through 12 , is 48.

10	REM	********************		
11	REM	***		***
12	REM	***	IRSMAN ***	
13	REM	***		*
14	REM	********************		
15	REM			
16	REM			
20	gosub	1000:	REM	INSTS
30	Gosub	2000:	REM	SETUP
40	gosub	3000:	REM	PLAY!
50	G0SUB	4000:	REM	! END!
60	END			

1000:

1001 REM *** INSTS
$1002:$
1010 TEXT : NORMAL : HOME
1020 UTAB 2: HTAB 13: PRINT "*** IRSMAN ***"
1030 UTAB 5: PRINT "THIS IS THE game of irsman. TO WIN, You try to accumulate more money THAN YOUR NEMESIS; THE IRS MAN."
1033 PRINT
1035 PRINT "GIUE ME A NUMBER BET WEEN 1 AND 50. I WILL D ISpLAY A CONSECUTIUE NUMBER STRING STARTING AT 1. AN D CONTINUING ";
1036 print "through to the numbe R YOU SELECTED. YOUWILL THE N CHOOSE HOW MUCH MONEY (WHI CH NUMBER) YOU WANT TO REMO UE FROM THE LIST."
1038 PRINT
1040 PRINT "BUT, AND HERE'S THE FUN PART, THE IRSMANGETS ALL OF THE REMAINING NUMBERS ON THE";

1042 PRINT "LIST THAT ARE FACTOR S OF THE NUMBER YOU CHOSE. THAT IS HOW THE IRSMAN GETS HIS MONEY, IF YOU CHOOSE E, FOR EXAMPLE, ":
1043 PRINT "THE IRSMAN GETS ALL OF THE REMAINING FACTORS OF G, (POTENTIALLY 1,2 , AND 3)."

1050 PRINT: INPUT "PRESS RETURN
 WHEN READY TO CONTINUE: "; ANS
1055 TEXT: NORMAL: HOME
10G0 UTAB 2: HTAB 13: PRINT "*** IRSMAN ***"
1065 UTAB 5: PRINT "YOU CANNOT C HOOSE A NUMBER THAT HAS NO REMAINING FACTORS IN THE LIS T, BECAUSE YOU MUST ALWAYS PAY THE IRS."
10EG PRINT
1070 PRINT "WHEN YOU CAN NO LONG ER REMOUE ANY OF THEREMAININ G NUMBERS FROM THE LIST, THE IRSMAN CLAIMS ALL OF THE UNUSED MONEY (NUMBERS) FO R HIMSELF."
1080 UTAB 23: INPUT "PRESS RETUR N WHEN READY TO CONTINUE: " :ANS ${ }^{\text {B }}$
1990 RETURN
$2000:$
2001 REM *** SETUP
$2002:$
2010 DIMLI(50): FOR I = 1 TO 50 :LI(I) = I: NEXT
2020 UTAB 23: CALL - 958
2022 PRINT CHR\$ (7): INPUT "HOW MANY NUMBERS (1-50) IN THE LIST? ";ANS末

```
2025 ANS = VAL (ANS$): IF ANS <
    1 OR ANS > 50 OR ANS < > INT
    (ANS) THEN UTAB 22: CALL -
    958: PRINT : PRINT "<<< USE
    A NUMBER FROM 1 TD 50 >>>": FOR
    PA = 1 TO 2000: NEXT : GOTO
    2020
2030 NU = ANS
2990 RETURN
3000:
3001 REM *** PLAY!
3002:
3005 HOME : UTAB 3: HTAB 13: PRINT
    "*** IRSMAN ***": PRINT
3010 PRINT : PRINT "HERE IS THE
    LIST: ":FOR I = 1 TO NU: IF
    LI(I) THEN PRINT I" ";
3015 IF PEEK (3G) > 35 THEN PRINT
3020 NEXT I
3021 IF NU = 1 THEN PRINT: PRINT
        : PRINT "ODOOPS, YOU CAN'T G
        ET ANYTHING...":TA = 1:LI(1)
        = 0: RETURN
3025 FOR I = 2 TO NU: IF NOT LI
        (I) THEN 3040
3030 FOR J = 1 TO I: IF NOT LI(
        J) THEN 3035
3031 IF J = I THEN 3035
3033 IF LI(I) / J = INT (LI(I) /
        J) THEN 3050
3035 NEXT J
3040 NEXT I: RETURN
3050 PRINT : PRINT : PRINT "THE
        SCORE IS: IRSMAN: "TA: PRINT
        " *YOU* : "YO
        U
30G0 PRINT : INPUT "WHICH DO YOU
        WANT? ":ANS$
30G5 ANS = VAL (ANS&): IF ANS <
        1 OR ANS > NU OR LI(ANS) = \emptyset
        OR ANS < > INT (ANS) THEN
        PRINT : PRINT "THAT IS NOT
        AVAILABLE !": GOTO 30G0
```

```
3070 5C = 0: IF AN = 1 THEN 3100
3075 FOR I = 1 TO AN: IFLI(I) =
    0 THEN 3090
3076 IF I = AN THEN 3090
3080 IF AN / I = INT (AN / I) THEN
    SC = SC + I
3090 NEXT I
3100 IF SC = THEN PRINT: PRINT
        "YOU CAN'T HAVE IT. THAT LEA
        UES NOTHING FOR THE IRSMAN"
        : GOTO 3010
3105LI(AN)= O:YO=YO + AN:TA=
        TA + SC
3110 FOR I = 1 TO AN: IFLI(I) =
        O THEN 3125
3115 IF I = AN THEN 3125
3120 IF AN / I = INT (AN / I) THEN
        LI(I) = D
3125 NEXT I
3130 GOTO 3010
4000:
4001 REM *** END
4002:
4010 PRINT: PRINT: PRINT "***
        THE GAME IS QUER ***": PRINT
    4015 FOR I = 1 TO NU: IF LI(I) THEN
        TA = TA + LI(I)
    401G NEXT
    4020 PRINT "THE IRSMAN: "TA
    4021 PRINT " YOU: "YO
    4022 PRINT "===================" % PRINT
    4025 IF TA > YO THEN PRINT "THE
        IRSMAN IS THE WINNER !!!"
    4030 IF TA < YO THEN PRINT "YOU
        HAVE BEATEN THE IRSMAN !!!"
    4035 IF TA = YO THEN PRINT "IT'S
        UNBELIEVABLE BUT ITS A TIE
        !!!"
    4040 PRINT CHR& (7): CHR= (7): CHR&
        (7)
4990 RETURN
```


This game is designed to test your leadership ability. You are given a ten year reign, during which time you try to guide your kingdom towards health and prosperity. There are certain conditions which are beyond your control (such as the bountiful nature of the harvest), but try to do the best job possible. When the price of acreage is high, (25 or 26 bushels per acre), you may choose to become a land broker instead of a gentleman farmer. That is, you may sell all but one acre of land (you must keep 1), and hope the price of land drops the following year. If the price of land drops by 4 bushels (say, from 26 to 22), you have, in effect, made a 4 bushel per acre profit. When the price of land is low, (below 20 bushels for an acre), it is recommended that you buy as much land as possible, while retaining enough grain to feed your people and sow your fields. You can easily understand the program by manipulating the beginning values of the variables in line 2010 and changing some of the random number statements which are the unpredictable forces of nature.


```
2020 DIM NU&(11): FOR J=1 TO 1
    1: READ NU&(J): NEXT : DATA
        FIRST,SECOND,THIRD,FOURTH,F
        IFTH,SIXTH,SEUENTH,EIGHTH,NI
        NTH:TENTH:ELEUENTH
2990 RETURN
3000:
3001 REM *** PLAY
3002:
3005 HOME: UTAB 3: HTAB 12: PRINT
    "*** KINGDOM ***": UTAB 7
3010z = Z + 1: PRINT: PRINT "HA
    MURABI, I BEG TO REPORT TO Y
    OU: ": PRINT : PRINT "IN THE
        "NU&(Z)" YEAR, "D" PEOPLE "
    : PRINT "STARUED; "I" CAME T
    \square THE CITY."
3280 P = P + I: IF Q = THEN P =
        INT (P / 2): PRINT : PRINT
    "A HORRIBLE PLAGUE STRUCK !!
    ! HALF OF YOUR PEOPLE PER
    ISHED...."
3285 PRINT
3290 PRINT "THE POPULATION IS "P
    ". THE CITY OWNS ": PRINT A
    " ACRES. YOU HARUESTED "Y"
    BUSHELS": PRINT "PER ACRE.
    RATS ATE "E" BUSHELS.": PRINT
    "YOU HAUE "S" BUSHELS IN RES
    ERUE."
3300 IF }Z=11 THEN RETUR
3400 C = INT (RND (1) * 10):Y=
    C + 17
3410 PRINT: PRINT "LAND IS TRAD
    ING AT "Y" BUSHELS PER ACRE.
    ": PRINT "HOW MANY ACRES DO
    YOU WISH TO BUY: ": INPUT Q
3440 IF Q < THEN PRINT "HAMUR
    ABI, YOU CANNOT DO THAT.": PRINT
    "IF YOU WISH TO SELL LAND, "
    : PRINT "FIRST BUY O ACRES."
    :GOTO 3410
```

3450 IF $Y * \square>5$ THEN PRINT "H AMURABI, THINK AGAIN! YOU \square NLY HAUE": PRINT S" BUSHELS OF GRAIN.": GOTO 3410
3455 IF $\square>0$ THEN $A=A+Q: 5=$ $5-Y$ * $\square: C=0:$ GOTD 3500
3460 INPUT "HOW MANY ACRES DO YO U WISH TO SELL?":口

3465 IF $Q<\square$ THEN PRINT "HAMUR ABI, I CANNOT DO THAT, IF Y OU": PRINT "DON'T WANT TO SE LL ANYTHING; THEN": PRINT "S ELL D ACRES.": GOTO 34G0
3470 IF (Q > A) THEN PRINT "HAM URABI, YOU ONLY OWN "A" ACRE S....": GOTO 34G0
$3480 A=A-Q: S=5+Y * Q: C=$ 0
3500 PRINT: PRINT "OF THE "S" B USHELS REMAINING, HOW MANY": PRINT "DO YOU WISH TO FEED YOUR PEOPLE:": INPUT Q
3505 IF $Q<1$ THEN PRINT "HAMUR ABI, THE PEOPLE WILL STARUE !!!": PRINT "YOU MUST FEED T HEM SOMETHING.": GOTO 350
3510 IF $Q>5$ THEN PRINT "HAMUR ABI, YOU ONLY OWN "S" BUSHEL S...": GOTO 3500
$35205=5-0: C=1$
3530 PRINT: PRINT "OF THE "A" A CRES YOU NOW OWN. HOW": INPUT "MANY DO YOU WISH TO PLANT W ITH SEED? ":D
3535 IF D < 1 THEN PRINT "HAMUR ABI, YOU MUST PLANT SOMETHIN G SO": PRINT "THAT THERE WIL L BE FOOD FOR NEXT YEAR... " : GOTD 3530
3540 IF (D > A) THEN PRINT "YOU ONLY HAVE "A" ACRES.": GOTD 3530


```
3545 IF D / 2 > S THEN PRINT "H
    AMURABI, THAT IS TOO MUCH TO
        PLANT...": GOTO 3530
3550 IF D > 10 * P THEN PRINT "
    YOU CAN ONLY FORCE ONE PERSO
    N TO ": PRINT "WORK TEN ACRE
    S OF LAND.": PRINT "YOUR POP
    ULATION OF "P" ISN'T BIG ENO
    UGH.": GOTO 3530
3555 5 = 5 - INT (D / 2):C = INT
    ( RND (1) * 5) + 1
3G00 Y = C:H = D * Y:E = D:C = INT
    ( RND (1) * 5) + 1: IF INT
    (C / 2) * 2 = C THEN E = INT
    (5 / [)
3610 S = 5 - E + H:C = INT ( RND
    (1) * 5) + 1:I = INT (C * (
    20 * A + 5) / P / 100 + 1):C
        = INT (Q / 20):Q = INT (1
    0 (2 * RND (1) - .3)): IF
    P < C THEN D = D: GOTO 3010
3615 D = P - C: IF D > .50 * P THEN
    3630
3620 P1 = ((z - 1) * P1 + D * 100
    / P) / Z:P = C:D1 = D1 + D:
    GOTO 3010
3630 PRINT : PRINT "YOU STARUED
    "D" PEOPLE IN ONE YEAR !": PRINT
    "YOU HAVE DONE SUCH A MISERA
    BLE JOB": PRINT "THAT YOU HA
    VE BEEN OUERTHROWN": PRINT "
    AND REMOUED FROM OFFICE !!!"
    :WL = 1: RETURN
4000:
4 0 0 1 ~ R E M ~ * * * ~ E N D ~
4002:
4 0 0 5 ~ I F ~ W L ~ T H E N ~ R E T U R N
4010 PRINT : PRINT : PRINT "IN Y
    OUR 10 YEARS OF RULE, "P1"%
    ": PRINT "OF THE POPULATION
    STARUED PER YEAR, ON": PRINT
    "THE AUERAGE.": PRINT "A TOT
    AL OF "D1" PEOPLE DIED.":L =
    A / P
```

```
4015 PRINT
4020 PRINT "YOU STARTED WITH 10
    ACRES PER PERSON, AND ENDE
    D WITH "L" ACRES PER PER
    SON !!"
4030 IF P1 > 33 OR L < 7 THEN PRINT
    "YOU ARE A DISGRACE!!! THE
    PEOPLE HAVE EXILED YOU TO A
        REMOTE ISLAND:": RETURN
4035 IF P1 > 10 OR L < g THEN PRINT
    "YOU RULE LIKE THE AYATOLLAH
    ! MOST OF YOUR SUBJECTS W
    OULD DANCE AT YOUR FUN
    ERAL!": RETURN
4040 IF P1 > 3 DR L < 10 THEN PRINT
    "YOU COULD HAVE DONE BETTER.
        " INT (P * .8 * RND (1))"
    PEOPLE": PRINT "WOULD LOVE T
    0 SEE YOU ASSASSINATED!!!": RETURN
4045 PRINT : PRINT "A GREAT JOB!
        !! YOU CAN RULE MY COUNTRY
    ANY TIME YOU WANT TO !!!": RETURN
```


In this game you try to alphabetize a scrambled list of letters. One square is left blank so that you may move a letter into it. The computer will scramble the completed version approximately 150 times. You must unscramble the letter matrix in as few tries as possible. Remember, practice makes perfect! Before we look at the graphics, it seems appropriate to mention that proper graphics alignment is not a matter of trial and error, but entails working with graph paper and drawing the figure which is to be outputed to the screen. Then, after figuring which coordinates will be filled in with which color, the writing of the program can take place. The nice pictures that you see on the screen are more the result of painstaking work than the result of brilliance. Getting back to Magic Squares, let's look at some of the graphics. Lines 2025-2028 draw the gameboard. Lines 2221-2235 draw the letters onto the game-board. Check this out by typing: 2225 STOP, then run. The first four letters (A,B,C, and D) are drawn. Type: CONT to continue the run. A matrix with two F's will be displayed. To undo any change, type: LOAD (program name). When this is done, the original program (without any changes) will be loaded.

2010 DIM $B(4,4): \operatorname{FOR} I=1 \operatorname{TO} 4:$ FOR $J=1$ TO $4: K=K+1: B($ $J, I)=K: N E X T J, I$
$2020 \operatorname{DIMDIR}(4,2): \operatorname{FOR} I=1 \mathrm{TO}$ 4: READ DIR(I,1),DIR(I,2): NEXT : DATA $1,0,0,1,-1,0,0,-1$
2025 GR: COLOR= 12
2026 FOR I $=1$ TO 32: HLIN 0.32 AT
I: NEXT
2027 COLOR $=15$
2028 FOR I $=0$ TO 32 STEP 8: HLIN 0,32 AT I: ULIN 0.32 AT I: NEXT
$2029 C O=15:$ GOSUB 2100
2030 UTAB 23: PRINT "く< I'M NOW SCRAMBLING THE GAME BOARD >> "
2040 5X $=4: 5 Y=4: 5 C=I N T(R N D$ (1) * 50) $+100:$ FOR $K=1 \mathrm{TO}$ 5C
$2050 \mathrm{D}=\mathrm{INT}(\mathrm{RND}(1) * 4)+1:$ $P X=5 X+D I(D, 1): P Y=5 Y+$ DI(D,2): IF $P X<1$ DR $P X>4$ OR PY < 1 OR PY > 4 THEN 20 50
$2060 B(5 X, S Y)=B(P X, P Y)$
$2061 \mathrm{~J}=5 \mathrm{~S}: \mathrm{I}=5 \mathrm{~S}: C 0=14:$ GOSUB 2200
$20 G 2 \mathrm{~J}=\mathrm{PX:I}=\mathrm{PY}: C O=12: G O S U B$ 2200
$2065 B(P X, P Y)=0: S X=P X: S Y=P Y$
2070 NEXT K: RETURN
2100 REM *** DRAW BOARD
2110 FOR I $=1$ TO 4: FOR $J=1 \mathrm{TO}$
4:CO = 14: GOSUB 2200: NEXT
J.I: RETURN

2200 REM *** DRAW LETTER
$2205 X=F N C(J): Y=F N C(I): C O L O R=$ CD

2210 ONB B(J,I) +1 GOSUB 2220.22
$21,2222,2223,2224,2225,2226$,
$2227,2228 \cdot 2229 \cdot 2230 \cdot 2231,223$
$2 \cdot 2233 \cdot 2234,2235:$ RETURN
2220 RETURN
2221 PLDT $X+2, Y:$ PLOT $X+1, Y+$
1: PLOT $X+3: Y+1:$ ULIN $Y+$
$2 Y+4$ AT $X:$ ULIN $Y+2 \cdot Y+$
4 AT $X+4:$ HLIN $X: X+4$ AT
$Y+3:$ RETURN
2222 ULIN $Y: Y+4$ AT $X: H L I N X: X$
+3 AT Y: HLIN X:X +3 AT Y
$+2: H L I N X, X+3$ AT $Y+4:$
PLOT $X+4, Y+1:$ PLOT $X+$
4:Y + 3: RETURN
2223 HLIN $X, X+4$ AT $Y: H L I N X, X$
+4 AT $Y+4: V L I N Y Y+4 A T$
X: RETURN
2224 HLIN $X: X+3$ AT $Y: H L I N X, X$
+3 AT $Y+4:$ ULINY,Y +4 AT
$X:$ ULIN $Y+1, Y+3$ AT $X+4$
: RETURN
2225 HLIN $X, X+4$ AT $Y: H L I N X, X$
+3 AT $Y+2:$ HLIN $X, X+4$ AT
$Y+4:$ ULIN $Y: Y+4$ AT $X:$ RETURN
2226 HLIN $X, X+4$ AT $Y: H L I N X, X$
+3 AT $Y+2:$ ULIN YY +4 AT
X: RETURN
2227 HLIN $X, X+3$ AT $Y:$ HLIN X, X
+4 AT $Y+4:$ ULIN $Y, Y+4 A T$
$X: \quad$ ULIN $Y+2: Y+4$ AT $X+4$
: PLOT $X+3: Y+2:$ RETURN
2228 HLIN $X, X+4$ AT $Y+2:$ ULIN
$Y: Y+4$ AT $X:$ ULIN Y:Y +4 AT
$X+4:$ RETURN
2229 HLIN $X, X+4$ AT $Y: H L I N X, X$ +4 ATY Y 4: ULINY,Y +4 AT
$X+2:$ RETURN
2230 HLIN $X, X+4$ AT $Y: H L I N X+$
$1: X+2 A T Y+4:$ PLOT $X: Y+$
3: ULIN Y:Y + 4 AT $X+2:$ RETURN

2231 ULIN Y：Y＋ 4 AT $X:$ PLDT $X+$ 1：Y＋2：PLOT $X+2: Y+1:$ PLOT $X+2, Y+3:$ PLOT $X+3: Y:$ PLOT $X+3 \cdot Y+4:$ RETURN
2232 HLIN $X, X+4$ AT $Y+4:$ ULIN $Y: Y+4 A T X:$ RETURN
2233 ULIN Y，Y +4 AT $X:$ ULIN Y，Y
+4 AT $X+4:$ PLOT $X+1 \cdot Y+$ 1：PLOT $X+3: Y+1:$ PLOT $X+$ 2：Y＋2：RETURN
2234 ULIN Y ，$Y+4$ AT $X:$ ULIN Y, Y +4 AT $X+4:$ PLDT $X+1, Y+$ 1：PLOT $X+2: Y+2:$ PLOT $X+$ 3：Y＋3：RETURN
2235 ULIN Y：Y＋ 4 AT $X:$ ULIN Y，Y
+4 AT $X+4:$ HLIN $X, X+4$ AT
$Y:$ HLIN $X: X+4$ AT $Y+4:$ RETURN

2990 RETURN
$3000:$
3001 REM＊＊＊PLAY！
$3002:$
3010 HOME ：PRINT＂MOVE WHICH PI ECE：＂：GET ANS末：PRINT AN 5\＄
3015 IF ANS中＜＂A＂OR ANS \gg＂Z＂ THEN PRINT CHR\＆（7）：GOTD 3010
3020 FOR $K=1$ TO $4: P X=5 X+D I$ $R(K, 1): P Y=5 Y+D I R(K, 2)$
3025 IF $P X<1$ OR PX＞ 4 DR PY \＆ 1 OR PY >4 THEN 3040
3030 IF $B(P X, P Y)=A S C$（ANS\＆）－ G4 THEN MO $=M \square+1: \operatorname{GOTO} 31$ 00
3040 NEXT K：PRINT CHR末（7）：GOTD 3010
$3100 B(5 X, 5 Y)=B(P X, P Y): J=5 X: I$ $=5 Y: C O=14:$ GOSUB 2200
$3110 \mathrm{~J}=\mathrm{PX:I}=\mathrm{PY}: C 0=12:$ GOSUB 2200：B（PX，PY）$=0: S X=P X: S Y$ $=P Y$


```
3200 K = 0: FOR I = 1 TO 4: FOR J
        = 1 TO 4:K = K + 1: IF K =
    1G THEN K = \emptyset
3210 IF B(J,I) = K THEN NEXT J,
        I: RETURN
3220 GOTO 3010
3990 RETURN
4000:
4001 REM *** END
4002:
4010 HOME : PRINT "YOU SOLUED IT
            !": PRINT : PRINT "IT WAS S
        CRAMBLED "SC" TIMES, ": PRINT
        "AND YOU SOLUED IT IN "MO" M
        QVES.
4020 INPUT "DO YOU WISH TO PLAY
        AGAIN? ";ANS&: IF LEFT& (AN
        S$,1) = "Y" THEN RUN
4990 RETURN
```


This game is a spinoff from a popular game show. The object is to eliminate as many numbers as you can from the list before you get stymied. To begin, you are given a list of numbers ranging from 1 through 9 . A pair of dice are rolled. The total ($2-12$) must be subtracted from the list. Most of the numbers can be removed from the list in a multitude of ways. If the first number rolled is a nine, there are eight possible ways to total exactly nine. They are:

$$
\text { 1,2,6 1,3,5 1,8 2,3,4 2,7 3,6 } 4,5 \text { and } 9 \text { by itself. }
$$

According to the rules, you may remove any of these combinations as long as the total is nine. There are many different strategies, but you can develop your own. Let's look at the graphics. Lines 2131 through 2139 draw the list of nine numbers. To verify this, type: 2136 and then return. Now when you run the program you will get 12345 (error message). Line 2210 gives each die a random result between 1 and 6 . To help you understand how one of the numbers is set to blinking, look at lines 2200-2336, and experiment with any of these lines.

1055	PRINT "TO MOVE IN THE LIST, USE THE FORWARD ANDBACKWARD ARROWS. THE NUMBER YOU ARE AT WILL BLINK. TO SELECT A NUMBER, PUSH THERETURN KEY."
$10 G 0$	PRINT: PRINT "WHEN YOU SEL
	ECT ENOUGH NUMBERS TO REACH
	THE TOTAL ON THE DICE, THE C
	OMPUTER WILLROLL THE DICE FO
	R YOUR NEXT TRY."
1065	PRINT : PRINT "IF YOUR TOTA
	L GOES DUER THE NUMBER, THE
	LIST WILL BE RESTORED, AND Y
	OU WILL HAVETO TRY AGAIN. TO GIUE UP, PRESS THE ESC KEY.
	"
1070	UTAB 23: INPUT "HIT RETURN
	WHEN READY TO CONTINUE: ":A
	NS ${ }^{\text {¢ }}$
1990	RETURN
2000	:
2001	REM *** SETUP
2002	:
2010	DIMLI(9):L2(9): FOR I = 1 TO
	9:LI(I) = I: NEXT
2020	GR : HOME
2030	FOR I = 1 TO 9:NU $=$ I: GOSUB
	2100: NEXT
2095	RETURN
2100	COLOR = NU: GOTO 2120
2110	COLOR $=0$
2120	ON NU GOTO $2131,2132,2133,2$
	$134,2135,2136,2137,2138,2139$
2131	HLIN 2,3 AT 5: ULIN 5.9 AT
	3: HLIN 2:4 AT 9: RETURN
2132	HLIN 6.8 AT 5: ULIN 5.7 AT
	8: HLIN 6:8 AT 7: ULIN 7,9 AT
	G: HLIN G:8 AT 9: RETURN
2133	HLIN 10.12 AT 5: HLIN 10.12
	AT 7: HLIN 10:12 AT 9: ULIN
	5.9 AT 12: RETURN

2134 ULIN 5.7 AT 14: VLIN 5.9 AT 16: HLIN 14,1G AT 7: RETURN

2135 HLIN 18:20 AT 5: HLIN 18,20 AT 7: HLIN 18,20 AT 9: ULIN 5.7 AT 18: ULIN 7.5 AT 20: RETURN

2136 HLIN 22,24 AT 5: HLIN 22,24
AT 7: HLIN 22,24 AT 9: ULIN 5:9 AT 22: ULIN 7, AT 24: RETURN

2137 HLIN 2G.28 AT 5: ULIN 5.9 AT 28: RETURN
2138 HLIN 30.32 AT 5: HLIN 30.32
AT 7: HLIN 30,32 AT 9: ULIN 5.9 AT 30: ULIN 5.9 AT 32: RETURN

2139 HLIN 34.36 AT 5: HLIN 34.36 AT 7: ULIN 5.7 AT 34: ULIN 5.9 AT 3G: RETURN

2200 FOR $J=1$ TO INT (RND (1) * 5) +5
$2210 \mathrm{D} 1=\mathrm{INT}(\mathrm{RND}(1) * \mathrm{E})+1$ $: D 2=I N T($ RND (1) * G) + 1
2220 GOSUB 2300: GOSUB 2310
2230 NEXT
$2300 \mathrm{DD}=\mathrm{D} 1: \mathrm{DX}=10:$ GOTO 2320
$2310 \mathrm{DD}=\mathrm{D} 2: \mathrm{DX}=24: \operatorname{GOTD} 2320$
2320 COLOR $=$ INT (RND (1) * 14)
$+1$
2325 FOR I $=30$ TO 3E: HLIN DX,D

2330 COLOR= 15: ON DD GOTO 2331. $2332 \cdot 2333 \cdot 2334 \cdot 2335 \cdot 2336$
2331 PLOT DX + 3.33: GOTO 2340
2332 PLOT DX + 1.31: PLOT DX + 5 .35: GOTD 2340
2333 PLOT DX + 1.31: PLOT DX + 3 .33: PLOT DX + 5.35: GOTD 23 40
2334 PLOT DX + 1.31: PLOT DX +5 .31: PLOT DX + 1.35: PLOT DX $+5.35:$ GOTO 2340

```
2335 PLOT DX + 1,31: PLOT DX + 5
    31: PLOT DX + 1.35: PLOT DX
        + 5.35: PLOT DX + 3.33: GOTO
    2340
233G PLOT DX + 1,31: PLOT DX + 5
    ,31: PLOT DX + 1,35: PLOT DX
        + 5,35: PLOT DX + 1,33: PLOT
    DX + 5.33: GOTO 2340
2340 FOR I = 1 TO 5:XX = PEEK (
        - 16336): NEXT : RETURN
3000:
3001 REM *** PLAY
3002:
3010 FOR I = 1 TO 9: IF NOT LI(
```



```
I) THEN NEXT : HOME : PRINT CHR末 (7) CHRक (7) CHR (7)"
YOU GOT THEM ALL !!!": FOR I \(=1\) TO 1000: NEXT I: RETURN
3012 GOSUB 2200: REM ROLL DICE 3015 FOR I = 1 TO 9:L2(I) = Ø: NEXT
```

```
3020 TT = D1 + D2:ST = \emptyset
```

3020 TT = D1 + D2:ST = \emptyset
3025 HOME : PRINT "<<< YOU MUST
GET A TOTAL OF "TT" >>>"
3030 FOR I = 1 TO 9: IF NOT LI(
I) THEN NEXT : HOME : PRINT
CHR\& (7)"THERE IS NOTHING L
EFT, AND": PRINT "YOU CANNOT
REACH THE TOTAL": FOR I = 1
TO 1000: NEXT I: RETURN
3035 NP = 0: G0SUB 3100
3040 NU = LI(NP): GOSUB 2110: FOR
I = 1 TO 50: NEXT I: GOSUB 2
100
3050 IF PEEK (- 16384) < }128\mathrm{ THEN
3040
3055 KEY = PEEK (- 16384): POKE
- 16368.0
3060 IF KEY = 149 THEN GOSUB 31
00: GOTO 3040
3061 IF KEY = 136 THEN GOSUB 32
00: GOTO 3040
3055 IF KEY = 155 THEN RETURN

```

3070 IF KEY < \(>141\) THEN 3040
3072 NU \(=\) NP: GOSUB 2110
\(30755 T=5 T+N P: L I(N P)=0: L 2(N\) \(P)=1: I F S T<T T\) THEN PRINT "YOU'VE GOT "ST", YOU NEED " TT - ST"..": GOTD 3030
3080 IF \(5 T=T T\) THEN GT \(=G T+T\) T: HOME : PRINT CHR (7) CHR ( 7 )"YOU GOT THAT ON E !!!": FOR I = 1 TO 500: NEXT I: GOTO 3010
3085 FOR I \(=1\) TO 9: IF L2(I) THEN \(\mathrm{NU}=\mathrm{I}:\) GOSUB 2100:LI(I) = I

3090 NEXT:ST = 0: PRINT: PRINT "OOOPS. TRY AGAIN! YOU NEED "TT"..." CHR\& (7): GOTO 303 ©
\(3100 \mathrm{NP}=\mathrm{NP}+1: \mathrm{IF} N P \geqslant 9\) THEN \(N P=1\)
3110 IF LI (NP) \(=0\) THEN 3100
3120 RETURN
\(3200 \mathrm{NP}=N P-1:\) IF NP \(<1\) THEN \(N P=9\)
3210 IF LI (NP) \(=0\) THEN 3200
3220 RETURN
\(4000:\)
4001 REM *** END
\(4002:\)
4010 TEXT : HOME
4020 UTAB 3: HTAB 10: PRINT "*** NUMBERS AWAY ***": UTAB 15
4030 PRINT "YOU GOT "GT" OUT OF A POSSIBLE 45.
4032 PRINT "THAT IS ":
4035 ON INT (GT / 5) GOTO 4040, \(4041,4042,4043,4044,4045,404\) E,4047:4048,4049
4040 PRINT "THE ABSOLUTE WORST ! !!": RETURN
4041 PRINT "EXTREMELY POOR !!!": RETURN
4042 PRINT "TERRIBLE !!!": RETURN

4043 PRINT "UERY BAD !!!": RETURN
4044 PRINT "JUST SO-S0 !!!": RETURN
4045 PRINT "FAIR...": RETURN
404G PRINT "PRETTY GOOD ...": RETURN
4047 PRINT "GREAT !!!": RETURN
4@4B PRINT "FANTASTIC !!!!!": RETURN
4049 PRINT "PERFECT !!!!!!!": RETURN




This game can be frustrating, challenging, and exciting all at the same time. You are given a list of integers which you must unscramble using a reversing technique. The list is established in lines 2010 by setting up an array table using a FOR NEXT loop. LI (I) becomes LI (1), LI (2) etc. Line 2020 assigns the random order to the list. Line 3050 does the reversing of the numbers that you select as ANS in 3040. These lines have several commands grouped together for speed of operation. If you want to dissect them it is best to rewrite the line as separate statements. You can also print out the variables:
```

3050 MDL = INT ((9 - ANS) / 2)
3051 PRINT "MDL IN LINE 3051 =":MDL
3052 FOR I = ANS TO ANS + MDL
3053 PRINT "I =":I:" ANS + MDL ="; ANS+MDL
3054 T = LI(I)
3055 PRINT "T =":T
305GLI(I) = LI(口 + ANS - I)
3057 PRINT "LI (I) =":LI(I)
3058 LI(9 + ANS - I) = T
3059 PRINT "T =":T:NEXT

```

This elaboration of line 3050 will let you watch the program pass the variables using ' T ' as a temporary storage location. Practically all the action takes place in this one line. When you run this revised program, print statements will tell you what happens each time you make a reversal.

The purpose of combining statements on a single line is speed of execution. When you are developing programs you should have every statement on a separate line. When the program is running correctly you should make two versions. Make a long version with lots of REMS and descriptive variable names, and a short version with combined lines. This will help you modify the program later on. Your own program that you knew my heart a few weeks ago can become a complete mystery if you don't spend enough time on REMS and organization.

```

1060 HOME : UTAB 2: HTAB 12: PRINT
"*** REVERSER ***": UTAB 5
1070 PRINT "IF YOU HAD THIS LIST
:": PRINT : PRINT "POSITIONS
: @ 1234567 8 9": PRINT
---": PRINT " LIST: Ø 1
9876 5 2 3 4": PRINT
1080 PRINT "AND YOU REUERSED AT
POSITION 7, IT WOULDLOOK LIK
E THIS:"
1090 PRINT : PRINT "POSITIONS: @
123456 7 8 9": PRINT "
--": PRINT " LIST: Ø 1 9
8 7 6 5 4 3 2": PRINT
1100 UTAB 23: INPUT "HIT RETURN
WHEN READY TO CONTINUE : ";A
NS\$
1110 HOME : UTAB 3: HTAB 12: PRINT
"*** REVERSER ***": UTAB 7
1120 PRINT "A FINAL REVERSAL AT
POSITION 2 WOULD COMPLETE
THE LIST AS THIS:"
113\emptyset PRINT : PRINT "POSITIONS: Q
1234567 8 9": PRINT "
--": PRINT " LIST: Ø 1 2
3456 7 8 9": PRINT
1140 PRINT : PRINT "YOU WIN WHEN
THE LIST IS SORTED IN
ASCENDING ORDER AS IS SHOWN
ABOUE.": PRINT : PRINT "GOOD
LUCK !!!"
1150 UTAB 23: INPUT "HIT RETURN
WHEN READY TO CONTINUE : ";A
NS\$
1990 RETURN
2000:
2001 REM *** SETUP
2002:
2010 DIM LI(9): FOR I = 0 TO 9:L
I(I) = I: NEXT

```

2020 FDR I \(=0\) TO \(9: X=I N T\) (RND
(1) * 10):T = LI(I):LI(I) =
\(L I(X): L I(X)=T: N E X T\)
2990 RETURN
\(3000:\)
3001 REM *** PLAY
\(3002:\)
3010 HOME : UTAB 3: HTAB 12: PRINT
"*** REUERSER ***": UTAB 7
3020 PRINT: PRINT "POSITIONS: \(\emptyset\)
12345678 g": PRINT"
--": PRINT " LIST: ":
3030 FOR \(I=0\) TO \(9:\) PRINT LI (I)
" ":
3035 FOR \(I=0\) TO 9: IFLI \((I)=\)
I THEN NEXT : RETURN
3040 PRINT: INPUT "REVERSE AT W HICH POSITION ( \(0-9)\) ?";ANS㤩: ANS = VAL (ANS ) : IF ANS < 0 OR ANS \(>9\) OR ANS < > INT (ANS) THEN PRINT: PRINT "T YPE A NUMBER BETWEEN ( -9 ):GD TO 3040
\(3050 \mathrm{MDL}=\mathrm{INT}((9-\mathrm{ANS}) / 2): \mathrm{FOR}\) \(I=A N S T D A N S+M D L: T=L I(\)
\(I): L I(I)=L I(9+A N-I): L I\)
\((9+A N-I)=T: N E X T\)
\(30 G 0\) MOUE \(=\) MOVE \(+1:\) GOTO 3020
\(4000:\)
4001 REM *** END
\(4002:\)
4010 PRINT: PRINT "YOU DID IT ! ": PRINT: PRINT "IT QNLY TO OK YOU "MO" MOUES"
4020 PRINT
4030 IF MO < 15 THEN PRINT "THA T'S SUPER!!!": RETURN
4040 PRINT "GOOD JOB!"
4990 RETURN



Impossible! It may seem impossible, but it's not. Deriving the key to this challenging game is very satisfying indeed! The object of the game is to transpose this list, \# \# \# \# . ? ? ? ? so that it looks like this ? ? ? ? . \# \# \# \#. The rules are few. The question marks (?) can only move to the left. Pound signs (\#) can only move to the right. Either sign may be moved during a turn, with the following limitations. A sign may be moved into the place currently occupied by the period (this space is referred to as the blank space). A move is made by moving to an empty space or by jumping over one opposing piece. To understand the function of lines in the play section, separate compound lines and print out variables as you did for Reverser.

10 REM \(* * * * * * * * * * * * * * * * * * * *\)
11 REM *** \({ }^{*} * *\)
12 REM *** TRANSITION ***
13 REM \(* * *\) ***

15 REM
16 REM
20 GOSUB 1000: REM INSTS
30 GOSUB 2000: REM SETUP
40 GOSUB 3000: REM PLAY!
50 GOSUB 4000: REM !END!
GO END
\(1000:\)
1001 REM *** INSTS
\(1002:\)
1010 TEXT: NORMAL: HOME
1020 UTAB 3: HTAB 11: PRINT "*** TRANSITION ***"
1030 UTAB 7: PRINT "THE GAME OF TRANSITION WILL PRESENT YOU WITH A LIST OF NINE DIGITS. THE LIST WILL LOOK LIKE T HIS: "
1039 PRINT
1040 PRINT "
1234
56789 \# \# \# \# - ? ? ? ?"
1050 PRINT: PRINT "THE OBJECT I 5 TO TRANSPOSE THE ORIGINAL CHARACTER POSITIONS. TRY TO REVERSE THEPOUND SIGNS (\#) AND THE QUESTION MARKS INTO ONE ANOTHER'S PREVIOUS POSI PIONS."
10GD UTAB 23: INPUT "HIT RETURN WHEN READY TO CONTINUE: ";A NS \({ }^{\circ}\)
1070 HOME: UTAB 3: HTAB 11: PRINT "*** TRANSITION ***": UTAB 7

1080 PRINT "THE '\#' CHARACTER CA N ONLY MOUE TO THE RIGHT, A ND THE '?' CHARACTER CAN ONL Y MOUE TO THE LEFT."


1090 PRINT: PRINT "A MOUE IS MA DE BY MOUING TO AN EMPTY SPACE, OR BY JUMPING QUER ON E OPPOSING PIECE."
1100 PRINT: PRINT "TO MAKE A MO UE, YOU ENTER THE POSITION NUMBER OF THE MOUING PIECE. TO QUIT, ENTER ZERO (O)."

1110 UTAB 23: INPUT "HIT RETURN WHEN READY TO CONTINUE: ":A NS o \(^{2}\)
1990 RETURN
\(2000:\)
2001 REM *** SETUP
\(2002:\)
2010 DIMLI(9):FOR I = 1 TO 4:L
\(I(I)=1: L I(10-I)=2: N E X T\)
\(2020 \mathrm{NM}=0\)
2990 RETURN
\(3000:\)
3001 REM *** PLAY
\(3002:\)
3010 HOME : UTAB 3: HTAB 11: PRINT "*** TRANSITION ***": UTAB G
\(3020 \mathrm{FOR} I=1 \mathrm{TO} 9 \mathrm{IF}(\mathrm{I}<5 \mathrm{AND}\)
\(L I(I)=2) \quad\) R ( \(I=5\) ANDLI(
\(I)=0\) ) OR (I > 5 AND LI (I) =
1) THEN NEXT:WL = 1: RETURN

3022 PRINT: PRINT "[": FOR I = 1 TO 9 : PRINT I:
3023 IF I < 9 THEN PRINT " ":
3024 NEXT: PRINT "] \#---> <
---?"
3025 PRINT "[": FORI = 1 TO \(9:\) PRINT MID\& ("。\#?", LI(I) + 1,1):
3026 IF I < 9 THEN PRINT " ":
3027 NEXT: PRINT " MOUE (D9):"
 ANS \(\$>\) "g" THEN 3030
3035 IF ANS \(=\) " \(\emptyset\) THEN WL \(=\emptyset:\) RETURN 3040 ANS \(=V A L\) (ANS \(\$\) ): PRINT ANS
```

3045 IF LI(ANS) = @ THEN PRINT
"THAT SPACE IS EMPTY ...": GOTO
3020
3050 IF LI(ANS) = 1 THEN DI = 1
3051 IF LI(ANS) = 2 THEN DI = -
1
3055 IF ANS + DI > G OR ANS + DI

```
    < 1 THEN PRINT "IT CANNOT
    MOUE FURTHER ...": GOTO 3020
\(30 G 0\) IF LI (ANS + DI) \(=\emptyset\) THEN LI
        \((A N S+D I)=L I(A N S): L I(A N S)\)
            \(=0: N M=N M+1: \operatorname{GOTO} 3020\)
3065 IF ANS + DI + DI \(>9\) OR ANS
            \(+D I+D I<\emptyset\) THEN PRINT"
    IT CANNOT MOUE FURTHER ...":
        GOTO 3020
3070 IF (LI(ANS + DI) < \(>\mathrm{LI}(A N\)
    5)) AND (LI (ANS + DI + DI) =
    () THEN LI(ANS + DI + DI) =
    \(L I(A N S): L I(A N S)=D: N M=N M+\)
    1: GOTO 3020
3075 PRINT "IT CANNOT MOVE FURTH
        ER ...": GOTD 3020
3990 RETURN
\(4000:\)
4001 REM *** END
\(4002:\)
4010 PRINT: PRINT: PRINT "THE
        GAME IS DUER !!!": PRINT
4020 IF WL \(=\emptyset\) THEN PRINT "YOU
        GOT STUCK AFTER "NM" MOUES."
        : PRINT "BETTER LUCK NEXT TI
        ME !"
4025 IF WL \(=1\) THEN PRINT "YOU
        DID IT !!!": PRINT "AND IT D
        NLY TOOK "NM" MOUES."
4990 RETURN



For all of you word buffs, here is a game of anagrams geared towards any skill level. For those of you who are not familiar with anagrams, it is a word given in scrambled fashion. The following list should help.

\section*{SCRAMBLED UNSCRAMBLED RATING ( \(1=\) EASY \(10=\) VERY HARD \()\)}
\begin{tabular}{lll} 
xob & box & 1 (elementary) \\
tahb & bath & 2 (easy) \\
laott & total & 3 (light) \\
betd & debt & 4 (mild) \\
gindru & during & 5 (moderate) \\
ptles & slept & 6 (trying) \\
spumlie & impulse & 7 (tough) \\
yrtasic & crystal & 8 (difficult) \\
meminscon & mnemonics & 9 (hard) \\
preskulen & spelunker & 10 (very hard)
\end{tabular}

In the actual game, the difficulty factor ranges from 1 to 5 . The program does not utilize color, but there are some interesting points. You will note that there is a white border encirling each word. Line 3050 puts the computer into the INVERSE mode. Instead of plotting white onto black, the INVERSE is true, black will be plotted onto a white background. Lines 3050, 3060, and 3070 are responsible for drawing the white border. Copy these two short programs to see how the output is changed.
```

10 NORMAL 10 INUERSE
20 FOR A = 1 TO 10 20 FOR A = 1 TO 10
30 UTAB 2*I:HTAB I 30 UTAB 2*I:HTAB I
40 PRINT " " 40 PRINT " "
50 NEXT

```

Line 3080 is a loop which 'makes a pass' for each letter in the word (WL = Word Length). Although you see the entire word appear on the screen at one time, what is really happening is that one letter (WS\$) at a time is being printed. Line 3090 instructs the computer to PRINT CHR\$(95) once for every letter in the word. CHR(95) is a hyphen (-), so 3090 instructs the computer to print a hyphen for each letter in the word.

\begin{tabular}{|c|c|}
\hline 2030 & UTAB 18: INPUT "WHICH OPTIO \\
\hline & \(N(1-5): " \# A N S\) \\
\hline 2035 & IF ANS < 1 OR ANS > 5 OR AN \\
\hline & \(5<>\) INT (ANS) THEN PRINT \\
\hline & CHR\$ (7): UTAB 18: CALL \\
\hline & 958: G0T0 2030 \\
\hline 2100 & DIM WOQ ( 100 ): FOR I = 1 TO \\
\hline & 100: READ WO\$ (I): NEXT \\
\hline 2105 & DATA CAT,DOG TREE, SIT,DOOR \\
\hline & , BOX, ARM, WALL, TEA, PEN, PAD, CL \\
\hline & P,PIN,DIG,GOOD, TIE, SEA,ARE, H \\
\hline & OW, LIP \\
\hline 2110 & DATA WARM,WIND,LEAF, BLUE,W \\
\hline & AIT, KITE,SLIP, DRIP, MAZE, PARK \\
\hline & , LIFE,GAME, HIGH, DISK, RUIN, CA \\
\hline & RD, MOLE, ARCH, HARD, VERY, DATA \\
\hline 2115 & DATA PENCIL,LOOSE, NORMAL, T \\
\hline & IRED, BEFORE, AFTER,BLACK, TARG \\
\hline & ET, KNOCK, BAGEL, INPUT, RETURN, \\
\hline & START, ENTRY, GROUND, SHINE, HOR \\
\hline & SE, PAPER, GREEN, PHONE \\
\hline 2120 & DATA ORIGINAL, BEHIND, MAGAZ \\
\hline & INE, STORAGE, SCRATCH, COMPUTER \\
\hline & , PERSONAL , SOF TWARE, PERFORM 5 \\
\hline & YSTEM, WINDOW, COMBINE, TANGENT \\
\hline & , SPECIFY, ANOTHER, EUALUATE, ME \\
\hline & MORY, INSIDE, IGNORE, HOWEVER \\
\hline 2125 & DATA SEQUOIA, MATRIX, CQORDI \\
\hline & NATE, SPACIAL, DIRECTION,SUBST \\
\hline & ANTIAL, CONTINUE, SUBSCRIPT,EM \\
\hline & ULATE, APPROPRIATE, CONICAL, DE \\
\hline & UELOPMENT, ELEUATION,MECHANIC \\
\hline & AL, MAGNETIC,TRAJECTORY,STIMU \\
\hline & LUS, CIRCUMSTANCE, PROBABILITY \\
\hline & , PRDJECTION \\
\hline 2200 & DIM WR ( 15 ), WS \$ (15) ,WC ( 15 ) \\
\hline 2990 & RETURN \\
\hline 3000 & : \\
\hline 3001 & REM *** PLAY \\
\hline 3002 & : \\
\hline 3010 & WO = INT ( RND (1) * 20) + \\
\hline & (ANS - 1) * \(20+1\) \\
\hline
\end{tabular}
\(3020 \mathrm{WL}=\operatorname{LEN}(W \square \$(W D)): F Q R I=\)
1 TOWL:WR\& (I) = MID\& (WD中 (
W() :I, 1):WS\& (I) = WR\& (I): NEXT
\(3025 \mathrm{FOR} I=1 \mathrm{TO} W \mathrm{~T}: \mathrm{TI}=\mathrm{INT}(\) RND (1) * WL) + 1:WS \(=W 5\). (I):WS\$(I) = WS\$(TI):WS末(TI) = WS\$: NEXT
3030 HOME : UTAB 3: HTAB 9: PRINT "*** WORD SCRAMBLE ***"
3040 UTAB 7: PRINT "HERE IS YOUR SCRAMBLED WORD: "
3050 UTAB 10: HTAB 10: INUERSE: FOR I = 1 TOWL \(+4:\) PRINT " ": NEXT
30G0 VTAB 11: HTAB 10: PRINT " " : HTAB 10 + WL + 3: PRINT " ": UTAB 12: HTAB 10: PRINT " ": HTAB 10 + WL + 3: PRINT " ": UTAB 13: HTAB 10: PRINT " ": HTAB 10 + WL + 3: PRINT " ";
3070 UTAB 14: \(\operatorname{HTAB}\) 10: \(F\) OR \(I=1\) TO WL + 4: PRINT " ": NEXT : NORMAL
3080 UTAB 12: HTAB 12: FOR I = 1 TO WL: PRINT WS\$(I): NEXT


3090 UTAB 17: HTAB 12: FOR I = 1 TO WL: PRINT CHR\$ (95): NEXT

3100 UTAB 20: HTAB 1: PRINT "(EN TER A-Z FOR THE LETTER... RE TURN WHENYOU ARE DONE.)"
\(3200 \mathrm{WP}=1\)
3205 FOR I \(=250\) * ANS TD 1 STEP \(-1\)
3206 IF PEEK ( -16384 ) > 127 THEN GOTO 3210
3207 IF INT (I / 50) * \(50=I\) THEN UTAB 12: HTAB 30: PRINT "TI ME: " INT (I / 50)" "
3208 NEXT : RETURN
\begin{tabular}{|c|c|}
\hline 3210 & UTAB 17: HTAB 11 + WP: GET \\
\hline & ANS \({ }^{\text {a }}\) \\
\hline 3220 & IF ASC \(\left.(\text { ANS })^{\prime}\right)=8\) THEN 330 \\
\hline & 0 \\
\hline 3230 & IF ASC \((\) ANS \()=21\) THEN 34 \\
\hline & 00 \\
\hline 3235 & IF ASC (ANS\&) \(=13\) THEN RETURN \\
\hline 3240 & IF ANS末 < "A" OR ANS \gg "Z" THEN ANS \(=\) CHR \({ }^{(95)}\) \\
\hline 3245 & WC\& (WP) = ANS\$: PRINT ANS\$: \\
\hline 3250 & \[
\begin{aligned}
& W P=W P+1: I F W P>W L \text { THEN } \\
& W P=1
\end{aligned}
\] \\
\hline 3260 & GOTO 3207 \\
\hline 3300 & IF WCक(WP) = "" THEN PRINT
CHR (95): GOTO 3320 \\
\hline 3310 & PRINT WC\& (WP): \\
\hline 3320 & \[
\begin{aligned}
& W P=W P-1: I F W P<1 \text { THEN } \\
& W P=W L
\end{aligned}
\] \\
\hline 3330 & GOTO 3207 \\
\hline 3340 &  \\
\hline 3410 & PRINT WCक (WP): \\
\hline 3420 & \[
\begin{aligned}
& W P=W P+1: I F W P>W L \text { THEN } \\
& W P=1
\end{aligned}
\] \\
\hline 3430 & GOTO 3207 \\
\hline 4000 & : \\
\hline 4001 & REM *** END \\
\hline 4002 & : \\
\hline 4010 & FOR I = 1 TO WL: UTAB 12: HTAB \\
\hline & 11 + I: PRINT WRo (I): IF WC \\
\hline & \$ (I) = WR\& (I) THEN INVERSE \\
\hline & : UTAB 17: HTAB 11 + I: PRINT \\
\hline & WC\& (I): NORMAL:WC = WC + 1 \\
\hline 4020 & NEXT: UTAB 20: HTAB 1: CALL - 958: IF WC = WL THEN PRINT CONGRATULATIONS !": PRINT \\
\hline & YOU UNSCRAMBLED THE ENTIRE W \\
\hline & ORD ! ": GOTO 4040 \\
\hline 4030 & PRINT "THE GAME IS DUER..." \\
\hline & : PRINT "OUT OF "WL" LETTERS \\
\hline & , YOU GOT "WC: PRINT "OF THE \\
\hline & M Correct." \\
\hline
\end{tabular}
```

4040 INPUT "DO YOU WISH TO PLAY
AGAIN? ":ANS\&: IF LEFT\& (AN
S\&,1) = "Y" THEN RUN
4050 RETURN

```



This is an addicting game in which you try to consume all of the food squares before the Mubble Eaters consume you. A 9 by 9 arena houses the action. There are 64 food squares and three Mubble Eaters (ME's). If on the first run you do not complete the mission, you still have another Mubble to finish what the first Mubble started. It is up to you to safely guide the Mubble to gluttony. Go to it! This program will be explained line by line. It was chosen because the use of graphics is such that most of the other programs can be understood if this program is understood.

10 to 16 REM means remark. Anything may be construed as a remark. In this case, the REM statement is used to allow the program name to be written. Naturally, ***************** is not an actual REMark, but this statement (REM) allows the programmer to write the title in a computer-acceptable format.

15 and 16 The REM statements are followed by nothing. Their purpose is to maintain space between the title and line 20 (for aesthetic reasons).

20 GOSUB 1000 tells the computer to branch to line 1000 and to continue until the statement RETURN is encountered. When it is, the program will RETURN to line 20 and continue on to line 30 . The colon which follows GOSUB 1000 is significant. .... A colon announces to the computer that a new instruction is forthcoming. An instruction which is preceded by a colon is exactly the same as an instruction preceded by a line number, with one important exception. If an instruction is a conditional (IF ..... THEN) the computer will perform the next sequential instruction if the condition is not met; but if the condition IS met, then every instruction on that line will be performed-even those instructions set off by a colon. What is present on lines \(20-50\) is a clumping of more than one instruction per line. You already know that a REM statement instructs the computer to ignore whatever follows it, so REM INSTS is written for your benefit, not the computer's. INSTS stands for INSTRUCTIONS.
\(30-50\) are the same format as line 20 . This is the key to the structuring of BASIC programs. All the instructions are in 1000-1999, setup at 2000-2999, etc.

60 When line 50 has been executed, the program is finished. END returns computer control to the user. You can have END anywhere in a program and even have it in several places as long as it does not get executed until the proper time!

1001 REM \({ }^{* * *}\) INSTS This line serves to inform the reader that the following lines contain the instructions.

1010 Line 1010 contains three instructions. TEXT is the instruction which changes the computer from the graphics (color) mode, back into the text (black and white) mode. NORMAL sets the the background color to black and the lettering color to white. HOME clears the screen (but only clears the screen of text, not color). It is standard practice to use this line in any program before a title screen is printed to 'clear the decks' of any text, graphics, or even garbage left over from a previous program.

1020 Line 1020 contains three instructions. VTAB 2 translates to Vertical TAB 2 lines. In other words, tab down two lines from the top of the screen. HTAB 10 translates to Horizontal TAB 10 spaces. This means, tab over ten spaces from the left-hand margin. PRINT says, output to the screen whatever is between the quotes. If you give the instruction: PRINT " \(X\) " then the output will be \(X\). If you give the instruction: PRINT X then the numeric value contained in the variable ' \(X\) ' will be printed. In the case of line 1020, the character string *** MUBBLE CHASE *** will be printed on the screen two lines down from the top and ten spaces in from the left margin.

1025 VTAB 5 This line instructs the computer to tab down five lines from the top of the page.

1030 This line PRINTs, verbatim, that which is between the quotes (five lines down from the top of the page).

1035 This line, in effect, PRINTs a blank line. The reason that this line is used is so that the text printed by line 1030 and the text to be printed by line 1040 will be separated by a blank line.

1050 This line contains two instructions. VTAB 23 tabs down 23 lines from the top of the page. The INPUT statement in this case serves only to hold up the program until you are ready to go on.

1060 This line contains five instructions. HOME clears the screen. VTAB 2 tabs down two lines from the top. HTAB 10 tabs over ten spaces from the left margin. PRINT outputs to the screen the material between the quotes, at a beginning position ten spaces from the left and two lines down from the top. After the PRINT statement is executed, the computer reads VTAB 5. This instruction says to skip down to the fifth line.

1070 This line PRINTs the material between the quotes on the fifth line from the top.

1090 (six instructions) HTAB 18 Horizontally TABs 18 spaces right. Next, the word 'UP' is printed. Then a blank line is printed (PRINT). Fourth, the computer is told to Horizontally TAB (to the right) 19 spaces. Then the letter ' I ' is printed. Last, another blank line is printed below the ' I '.

1091 and 1092 finish the instructional chart which line 1090 began.
1100 This line is the same as line 1050.
1990 RETURN. The GOSUB 1000 in line 20 is completed by the required RETURN statement. Control is sent back to line 20, and then the program drops to line 30 which says to GOSUB 2000. This may seem a bit roundabout, but it is the basis of structuring the program into modular units.

2000 : This line and 2002 do nothing but aid in the readability of line 2001.
2001 REM *** SETUP This REMark tells you that the program setup is to follow.

2015 This instruction allows the variable ME to assume six different values (ME \((1,1) \mathrm{ME}(1,2) \mathrm{ME}(2,1) \mathrm{ME}(2,2) \mathrm{ME}(3,1) \mathrm{ME}(3,2)\), and the variable SP to assume three different values. The instruction DIM is short for DIMension. The computer is being told that ME is now a two-DIMensional array, and that SP will become a one-dimensional table. Instead of occupying a single location in memory, ME is now capable of occupying six, and SP can occupy three. A subscript (the numbers in the parentheses, ie. \((1,1)\) ) tells the computer where to find a certain value (in memory). Within a subscript there are rows and columns. The first value is always the length of each row (ME and SP both have rows which are three places long), and the second value (if present) is the length of each column. Another way to view subscripts is to envision the numbers as being: row, column. That is, \(\mathrm{ME}(3,1)\) is located in the third row of the first column. Following will be an illustration of how the arrays are stored:

\section*{COLUMN 1 COLUMN 2}

ROW 1 ME \((1,1) \quad\) ME \((1,2)\)
ROW 2 ME \((2,1) \quad\) ME \((2,2)\)
ROW 3 ME \((3,1) \quad\) ME \((3,2)\)

This is a one dimensional array:
ROW 1 SP (1) SP (2) SP (3)


Actually, an array is assumed to have a storage location reserved for all zero subscripts, such as \(\operatorname{ME}(0,0) \mathrm{ME}(0,4) \mathrm{ME}(3,0)\), but their use is normally omitted. Also, the computer does not actually store tables or arrays in two or three dimensions. The computer stores the data in one long string. The illustration is to help you visualize how to access various memory locations.

2030 PT is set to 0 , and MU is set to 3 for reasons to be explained later.
2040 (two instructions) GR changes the mode from text (black and white) to GRaphics (color). HOME clears the bottom four lines which is the text area when in the GRaphics mode.

2041 This line specifies that all drawing is to be done in color 15 (white), until the color is changed.

2042 (two instructions) This line causes two Horizontal LINes to be printed (in white). Both lines travel from the left of the screen (0) to near the right edge ( 38 , the lowest it could go is 39 ). The screen is broken down into 40 horizontal units \((0-39)\) and 40 vertical units ( \(0-39\) ). When a horizontal line is to be printed, the computer needs to know which of the 40 rows to draw the line into. In the case of line 2042, the two lines are being drawn in row 0 and row 38.

2043 (two instructions) Line 2043 causes two Vertical LINes to be printed (still in white). This time the computer needs to know the column in which to draw the lines. The two lines are to be drawn in columns 0 and 38. What the result of lines 2040-2043 will be, is a white border traveling around the screen.

2050 This line changes the color of future drawings from 15 (white) to 1 (magenta).

2051 This line also bears close examination. The way to tell the computer to perform an action a certain number of times is by use of the FOR/NEXT loop. If you want a loop to be perform 6 times, the computer offers a number of ways to do this. The statement: FOR I = 1 TO 6 tells the computer to begin a loop with I equal to 1 . Unless told otherwise, the value of \(I\) is incremented by one each time the loop is completed. After the sixth loop the value of I will change from 6 to 7. Since the FOR statement specifically said to perform the loop while I was equal to 1 through 6 , the computer knows to stop looping when \(I=7\). Another way of telling the computer to loop six times would be: FOR \(X=5\) TO 10. By using the parameters 5 and 10, the loop will begin at \(X\) \(=5\) and continue until through \(X=10\). We could say FOR I = 1000 to 1005 and also achieve a loop to be performed six times. There are other ways to create a loop. If you write: FOR \(X=3\) TO 11, then the value of \(X\) is incremented by one each time the loop is performed. But if you write: FOR X \(=3\) TO 11 STEP 2, then X is incremented by TWO each time the loop is performed. For the first time through the loop \(X=3\), then two is added to \(X\), so \(X=5\) for the second time through, then \(X=7, X=9, X=11\), and finally \(X=13\) (and the loop is done). This additional feature, STEP, merely allows the programmer to regulate the increment of the loop controller. Line 2051 is: FOR \(\mathrm{I}=2\) TO 34 STEP 4. To interpret, this loop is performed when \(\mathrm{I}=2,6,10,14\), \(18,22,26,30\), and 34 . STEP 4 instructs the computer to increment \(X\) by 4 , instead of by one, each time the loop is performed.

2052 What we have here is a loop within a loop, also referred to as a nested loop. This second loop (referred to as the J-loop) is performed each time the Iloop is performed.

2053 The I-loop gets further nested with the advent of the K-loop. Each time the I-loop is performed, the parameters of the K-loop will change.

2054 This line instructs the computer to draw a magenta line beginning at position J and drawing up to \(\mathrm{J}+2\), and to draw the line at row K . Let's go back to line 2051 and see if we can follow this entire looping sequence. Line 2051 instructs the computer to perform the I-loop from 2 to 34 incrementing by 4. So \(\mathrm{I}=2\). Line 2052 instructs the computer to perform the entire J-loop each time the I-loop is performed. \(\mathrm{J}=2\) to 34 step 4, so to begin, \(\mathrm{J}=2 . \mathrm{K}=\mathrm{I}\) to I +2 , so to begin (since \(I=2\) ), \(K=2\) to 4 . Next, a Horizontal LINe is printed from \(\mathrm{J}(2)\) to \(\mathrm{J}+2\) (4) at row K (2). Remember, the entire K-loop is performed with each pass of the J-loop. Continuing the K -loop, add one to K ( \(\mathrm{K}=2\) to 4 , now \(K=3\) ). Draw a horizontal line from J (2) to J + 2 (4) at row \(\mathrm{K}(3)\). Completing the first of 81 K -loops, add one to \(\mathrm{K}(\mathrm{K}=2\) to 4 , now \(\mathrm{K}=4)\). Draw horizontal line from 2 to 4 at 4 . Now that the K-loop is done, the computer can continue the J-loop by incrementing J by 4. After doing this (line
2052) the computer is again instructed to perform the entire K-loop. The Kloop, remember, makes line 2054 get performed I to I + 2 times. Since I still equals 2, line 2053 can be rewritten as: FOR \(K=2\) to 4 . Performing the K-loop for \(\mathrm{K}=2,3\), and 4 , horizontal lines are drawn at \(6(\mathrm{~J}), 8(\mathrm{~J}+2)\) on row K . As you can see, the K-loop is entirely performed each time \(J\) is incremented. The J-loop is entirely performed each time the I-loop passes. To summarize, the Iloop is run just once, but has nine passes (a pass is an individual loop). The passes occur at \(2,6,10,14,18,22,26,30\), and 34 . With each pass of the I-loop the entire nine passes of the J-loop are performed. With each of the nine passes of the J-loop, all three passes of the K-loop are performed. A total of 243 passes of the K-loop are made. With each pass a horizontal line is drawn at \(\mathrm{J}, \mathrm{J}+2\) at row K . The 243 lines comprise the 81 magenta boxes you see on the screen.

2055 As mentioned before, a very easy and useful method of looping is by performing a FOR/NEXT loop. The FOR statement begins the loop (and each pass), conversely, the NEXT statement ends the loop (and each pass). When the NEXT statement is encountered, the computer will increment the variable as instructed. In the given example (line 2055), the variable K will be incremented each time a pass is made. The value of \(K\) starts at two and is incremented by one until it is equal to four. When the K-loop is started anew, K reverts to two. The variable J will be incremented each time that \(\mathrm{K}=4\) (unless \(\mathrm{J}=34\) ). The variable ' I ' will be incremented only when \(\mathrm{K}=4\) and \(\mathrm{J}=\) 34. In other words, when an instuction line (such as line 2055) contains more than one NEXT variable, then the loop represented by the first one \((\mathrm{K})\) is performed until completed. Then J is incremented, and again the K-loop is performed until completed. When \(\mathrm{J}=34\) and the K -loop is done, only then is 'I' incremented. Each time that the 'I' variable is incremented, the J-loop starts with \(\mathrm{J}=2\). The looping process continues until, on the two hundred fortythird pass, \(\mathrm{K}=4, \mathrm{~J}=34\), and \(\mathrm{I}=34\).

2060 This line DIMensions the computer's memory to accept MU as a twodimensional array. Six locations are reserved for MU values, not just one. Two rows with three columns each are set aside in the computer's memory.

2070 A FOR/NEXT loop is started here, with 'I' beginning at 5 and growing to 33 by increments of 4 .

2071 Nested within the I-loop is a J-loop, also starting at J \(=5\) and continuing, by 4 , until \(\mathrm{J}=33\). The entire J-loop (eight passes) is performed each time the I-loop makes one of its eight passes.

2072 This line needs to be broken up into more digestible pieces. First, RND (1) will give a RaNDom number between 0 and 1. Actually, RND (7) also gives
you a random number between 0 and 1 . Unless your computer has a special RND function, all random numbers are between zero and one. The random result is then multiplied by 4 , giving a number between .00000004 and 3.99999996. Next, the number 6 is added to the total. At this point go back and look at the command INT. INT changes RND (1) 4 from a decimal into an INTeger. This is done by truncating (chopping off) anything to the right of the decimal point. The number 3.996 becomes 3 (not 4). Because of this. INT (RND \((1) * 4)+6\) yields a random number between 6 and 9 , not between 6 and 10 . The result is that on each pass the color can be changed to \(6,7,8\), or 9 .

2073 This line instructs the computer to plot a point, in the color given by the RaNDom INTeger function, at \(\mathrm{X}, \mathrm{Y}\) coordinates I,J.

2074 As in line 2055, this line will increment J until \(\mathrm{J}=33\), then ' I ' will be incremented, J will revert to 5 , and the looping procedure will continue until NEXT J,I is reached when both I and J are equal to 33. At that point, the computer will drop down to line 2990 (the next instruction).

2990 RETURN This line completes line 30 , which instructs the computer to start a subroutine at line 2000, and to continue until the command RETURN is encountered.

3001 The REMark *** PLAY informs the reader that lines 3000-RETURN control the play.

3005 (nine instuctions) In this line, nine locations of ME are assigned values.
3006 (six instructions) First, the color is set to 2 (dark blue). Second, a loop is started. Third, the three Mubble Eaters are plotted onto the screen. Fourth, NEXT completes each pass of the loop. Because there is only one loop, the Iloop, the NEXT command needs no argument. Fifth, MD is set to 1 . Sixth, the variable HI is set to 0 .

3007 (twelve instructions) The first six instructions set values for the MUbble. Then values are given to the mubbles beginning \(X, Y\) coordinates, MX,MY. Remember, unlike a typical graph, the origin for the screen is in the UPPER left-hand corner, so the bottom left hand corner is at 0,39 . The ninth instruction sets the color (of the MUbble) to 4. Next, a loop is started. The eleventh instruction plots the MUbble at the \(\mathrm{X}, \mathrm{Y}\) coordinates which are given. Finally, the NEXT command completes the I-loop.

3010 (two instructions) First, MU is decremented by one. Then a test is made ( \(\mathrm{MU}<0\) ), and if the test (condition) proves to be true, the subroutine started by line 40 will be completed by RETURN.

3012 (six instructions) COLOR \(=0\) sets the color to 0 (black). A black, Horizontal LINe going all the way across the screen (from 0 to 39) to be drawn at row 39 is called for in the second instruction. Then the color is set to 15 (white). Next, a condition is made. If true, a loop is started, the point at (I * 2),39 is plotted each time a pass is made, and the NEXT statement marks the end of each pass.

3015 Remember, HOME only clears text, not color. In the GRaphics mode, only the bottom four lines are available for text. Next, a blank line is PRINTed; followed by the material between the quotes. The loop FOR I = 1 TO 2000 is merely a stalling tactic. The result of the loop is that the message \(\lll\) READY ..... >>> will stay on the screen while I is incremented by one, from 1 to 2000. This process takes from two to five seconds.

3020 Here we have a nested GOSUB. Line 40 initiated the subroutine beginning at line 3000 . Now line 3020 instructs the computer to perform a subroutine within a subroutine. A REMark is made to explain the purpose of the subroutine at line 3300 .

3025 This line is performed AFTER the subroutine beginning at line 3300. If you have eaten all 64 food points, then the subroutine (started by line 40 ) is completed.

3030 Here is another example of a nested GOSUB. The REMark tells us the purpose of the subroutine is to move the mubble eaters.

3040 ' HI ' is a special value. In most cases it is equal to "no" (which is "NOT \(\mathrm{HI}^{\prime \prime}\) ). If HI is equal to "yes", then, according to the program, the MUbble has been eaten by a Mubble Eater. If this is the case, then there is no need to go to 3020 (THEN 3020).

3041 To begin with, a loop is to be performed 60 times. In the loop, the variable XX is set to equal PEEK (-16336). This instruction (PEEK (-16336)) causes a clicking sound to be emitted from the speaker. This clicking sound is heard each time the Mubble eats one of the colored foodpoints. The NEXT statement concludes each pass.

3045 The FOR statement marks the start of a loop. The color is set to 0 (black), so when the Mubble Eaters move, after the Mubble moves, the positions on the maze where the Mubble Eaters were will not remain blue, but will be replaced with background colored points.

3050 This line draws the MUbble at its new position in the maze. This line is performed each time that the Mubble is moved.

3055 This line sends the program back to line 3005.
3300 Don't fret! Although this line appears to be a confusing conglomeration of variables, there is a definite purpose for this line. Before starting with an explanation, there are two important facts which you must know. One, MX and MY are the MUbbles \(\mathrm{X}, \mathrm{Y}\) coordinates. Two, the food points are located at specific intervals. Armed with this knowledge, you have a good chance of understanding what follows. The 64 food points are each located at an intersection. The \(X, Y\) coordinates at these 64 points are:
\begin{tabular}{rrrrrrrr}
5,5 & 5,9 & 5,13 & 5,17 & 5,21 & 5,25 & 5,29 & 5,33 \\
9,5 & 9,9 & 9,13 & 9,17 & 9,21 & 9,25 & 9,29 & 9,33 \\
13,5 & 13,9 & 13,13 & 13,17 & 13,21 & 13,25 & 13,29 & 13,33 \\
17,5 & 17,9 & 17,13 & 17,17 & 17,21 & 17,25 & 17,29 & 17,33 \\
21,5 & 21,9 & 21,13 & 21,17 & 21,21 & 21,25 & 21,29 & 21,33 \\
25,5 & 25,9 & 25,13 & 25,17 & 25,21 & 25,25 & 25,29 & 25,33 \\
29,5 & 29,9 & 29,13 & 29,17 & 29,21 & 29,25 & 29,29 & 29,33 \\
33,5 & 33,9 & 33,13 & 33,17 & 33,21 & 33,25 & 33,29 & 33,33
\end{tabular}

These points have one important thing in common. If you add three to any of the eight different X coordinates, the sum will be an exact multiple of four. Therefore, \(\mathrm{MX}+3\) divided by 4 will be an integer, and \((\mathrm{MX}+3) / 4\) will be equal to INT (the integer value of) \((M X+3) / 4\). Also, if you add three to any of the eight Y coordinates, then the sum will be evenly divisible by four; and \((M Y+3) / 4\) will be equal to INT \((M Y+3) / 4\). The only times when both (MX \(+3) / 4=\operatorname{INT}(\mathrm{MX}+3) / 4\) and \((\mathrm{MY}+3) / 4=\operatorname{INT}(\mathrm{MY}+3) / 4\) is at one of the sixty-four intersections. If, indeed, the Mubble is at an intersection, then FL equals "yes". If the MUbble is not at one of the sixty-four intersections, then FL equals "no".

3301 This line is a conditional (a test). If FL is equal to "yes", then the computer will skip to line 3320 .

3304 Each key on the keyboard has a coresponding numeric value referred to as an ASCII value. The keyboard ASCII values begin at 128 and proceed upward. PEEK (-16384) is an instruction which tells the computer to search the entire keyboard to see if any of the keys have been pressed. If they have, PEEK ( -16384 ) will be equal to the ASCII value of whichever key was pressed. In other words, if any character on the keyboard was pressed, the value of PEEK \((-16384)\) is going to be greater than 128.

3305 The variable KEY is set to the ASCII value of the key initially recognized by PEEK (-16384). As was mentioned before, the keyboard character ASCII
values begin at 128 . For the sake of understanding, 128 is subtracted from PEEK (16384).

3310 This line checks to see if the KEY pressed was I. The ASCII value for ' I ' is 73. If KEY is equal to 73 (I), then the variable MD (Mubble Direction) is set to 2. The computer is then told to branch to line 3319.

3311 This line checks to see if the KEY pressed was \(\mathrm{K} . \mathrm{K}\) is the game command which tells the Mubble to head west. If K was pressed, KEY is equal to 75 , and the Mubble's Direction (MD) is set to 1 .

3312 This line checks to see if the KEY pressed was M. The ASCII value for the letter M is 77. If, indeed, \(M\) was pressed, then Mubble Direction (MD) is set to 4 (undoubtedly this translates to MD = down).

3313 This line checks to see if the KEY pressed was J. If KEY equals 74, then the Mubble is going to head east. As in the previous three statements, the program will branch to line 3319 if the condition is met.

3315 This line will be performed only if KEY does not equal either 73 (I),74 (J),75 (K), or \(77(\mathrm{M})\). If none of the four conditions is true, then the program will bypass 3319 and go to 3320 .

3319 This instruction, POKE 16368,0, rests the keyboard strobe, so that new information can be accepted from it. Simply, it clears the keyboard so that PEEK (-16384) can read new input, not continually reread the first key that was pressed.

3320 This line sets X2 equal to the Mubble's \(X\) coordinate, and \(Y 2\) equal to the Mubble's Y coordinate.

3321 If Mubble's Direction is equal to 1 (west), then add one to the \(X\) coordinate. If the mubble is headed west (right), then the value of the \(X\) coordinate increases with each move.

3322 If Mubble's Direction is equal to 2 (up), then subtract one from the \(Y\) coordinate. Because the origin is in the upper left-hand corner, the value of the Y coordinate increases as Y travels down the screen. To illustrate, as a point descends from the upper left-hand corner to the lower left-hand corner, the \(\mathrm{X}, \mathrm{Y}\) coordinates would look like this: 0,0 (at the origin), \(0,10,20,30,40,50,6\) and so on until, at the bottom of the screen we have 0,39 .

3323 If Mubble's Direction is equal to 3 (east), then subtract one from the \(X\)
coordinate. As the mubble moves to the left (east), the value of the \(X\) coordinate is decremented.

3324 If Mubble's Direction is equal to 4 (south), then add one to the \(Y\) coordinate. As the mubble moves down (south), the value of Y is increased. This is due to the fact that the origin is in the upper left-hand corner.

3330 This line checks to see if either coordinate is out of the range of the maze. If it is, the subroutine is completed (RETURN), and the computer waits for you to input a viable keyboard character.

3337 It has already been determined that \(\mathrm{X} 2, \mathrm{Y} 2\) are the \(\mathrm{X}, \mathrm{Y}\) coordinates of the mubble. SCRN returns the color value of the present ( \(\mathrm{X}, \mathrm{Y}\) ) cursor location. If the \(X, Y\) coordinates on the screen are equal to COLOR \(=4\). In other words, if, at coordinates \(\mathrm{X} 2, \mathrm{Y} 2\), the SCReeN contains a mubble (the mubble is a greenish color \((\) COLOR \(=4)\) ) then skip to line 3345.

3340 This line instructs the computer to check and make sure that the color at \(\mathrm{X} 2, \mathrm{Y} 2\) is not black (SCRN X2,Y2 \(<>0\) (black)), and if it is not black, the variable XX is set to be PEEK (-16336) + PEEK (-16336) - PEEK (-16336) + PEEK ( -16336 ). This equation may appear to be about as clear as a Chinese newspaper, but it is really not difficult to understand. Although XX appears to be set to equal a string of PEEK ( -16336 )'s, this is not the case. When the computer attempts to locate the value of PEEK (-16336), it is instructed to flick the toggle switch on the speaker. The result is that a short clicking sound is emitted. In the above equation, PEEK (-16336) appears four separate times, so the clicking sound is made four times. Because the clicks are emitted one right after the other, only someone with exceptional hearing can differentiate the one short click as being composed of four, shorter clicks. Remember, line 3300 ascertained that mubble was at a possible foodpoint location. Because the location was not black (line 3340) or mubble colored (line 3337), the location must have contained a foodpoint, and as a result, the player scores a PoinT PT \(=\mathrm{PT}+1)\). Then the program checks to see if all 64 foodpoints have been scored. If they have, then the subroutine is completed by the RETURN command.

3345 This line is responsible for both moving the mubble ahead and replacing the mubble's last position with a black square. First, the color is set to 0 (black). Then, the hind third of the mubble's previous position, \(\operatorname{MU}(1,1)\) and \(M U(1,2)\) is replaced by a black spot. But don't fret, the color is changed to the mubble's greenish color (COLOR \(=4\) ), and the point where the mubble has moved to (the front one-third) is plotted. Last, the mubble's previous middle one-third becomes his rear one-third: \(\operatorname{MU}(2,1\) becomes \(\operatorname{MU}(3,1), \mathrm{MU}(2,1)\) becomes \(\operatorname{MU}(2,2), \mathrm{MU}(2,2)\) becomes \(\mathrm{MU}(3,2)\).

3350 This line sets the new, front one-third coordinates into the memory locations \(\operatorname{MU}(3,1)\) and \(M U(3,2)\). The new \(X\) coordinate for the mubble, X 2 , is now put into MX; and the new Y coordinate is moved into MY. is completes the task to be handled by this subroutine so it RETURNs.

3400 This line begins a loop which consists of three passes.
3402 Since there are three Mubble Eaters, the equation to check to see if they are at one of the 64 intersections has to be repeated three times. As with line 3300, if both conditions are met, then FL is, in effect, equal to 'yes'.

3405 With each pass of the loop, FL is roughly equivalent to 'yes' or to 'no'. If FL is 'no', then the program skips to line 3430.

3407 This line determines the Mubble Eaters' route of pursuit. The equation INT ((RND (1)* 6 ) +1 will yield an integer between 1 and 6 . The function of the ON command is to send the program to the corresponding line number. What this means is, if the random number turns out to be one, then go to the FIRST line number listed (3410). If the random number is five, then the program will branch to the fifth line in the list of six (3430). There is an equal chance that the random number will be equal to \(1,2,3,4,5\), or 6 . For each of the six possibilities, the program will branch to a certain line number. Following will be a list of the six random numbers, and the line number where the number will cause the program to branch.
\[
1-3410,2-3410,3-3410,4-3420,5-3430,6-3430
\]

Each number has a one-in-six chance of being the random number, and because there are only three different line numbers in the list of six, there are different odds of branching to the three lines. If the random result is 1,2, or 3 , then the program will GO TO line 3410 . There is a \(50-50\) chance (three in six) that this will happen. There is only a one-in-six chance that the the RaNDom number will be four, and the program will go to line 3420 . The random results five and six both cause the program to GO TO line 3430. The odds of this are two-in-six.

3410 Another ON statement, which utilizes a random number function, is demonstrated in line 3410. The random result will be either one or two. If one, then the program will GO TO 3411; if the random result is two, then the program will branch to line 3413.

3411 Remember that the program is in a three-pass loop. This line compares the mubble's X coordinate to that of one of the three Mubble Eaters. If MX is
less than the Mubble Eater's X coordinate then the MUbble is to the left (east) of the Mubble Eater. Using the numbers 1 through 4 to indicate the four directions, \(1=\) west (right), \(2=\) north (up), \(3=\) east (left), and \(4=\) south (down), the value of \(\operatorname{ME}(1,0)\) assumes the value of the direction (1-4) that the Mubble Eater should go.


3412 This line is the companion of line 3411. If the MUbble's X coordinate (MX) is greater than one of the three Mubble Eaters' X coordinate, then the mubble is west (left) of the ME's position, so \(\mathrm{ME}(\mathrm{I}, 0)\) assumes the value which will later instruct the ME to move to the left. As in line 3411, if the condition is true \((\mathrm{MX}>\operatorname{ME}(1,1))\) then the program branches to line 3430 . Notice that if the Mubble Eater is on the same lateral plane (has the same X coordinate), that is, if the ME is on the same vertical line as the mubble, then the program falls through and starts trying to track the mubble by closing in on its \(Y\) coordinate (lines 3413 and 3414).

3413 Lines 3413 and 3414 have the same function as 3411 and 3412. The \(Y\) coordinate is the argument used for comparison. If the mubble's \(Y\) coordinate (MY) is smaller than the ME's \(Y\) coordinate, then the mubble is north (up), relative to the position of the ME.

3414 Likewise, if MY is greater than the Mubble Eater's Y coordinate, then the MUbble is south (down), relative to the position of the mubble eater.

3420 If the random number generated by line 3407 is four or if at 3413 MY is equal to \(\operatorname{ME}(1,2)\), then line 3420 will be performed. This line gives the directional indicator ( \(\mathrm{ME}(\mathrm{I}, 0)\) a random value of \(1,2,3\), or 4 .

3430 Here the new coordinates for one of the ME's are set (using the information gained in lines 3411-3414).
\(3435 \mathrm{ME}(\mathrm{I}, 0)\) is the directional indicator. To interpret, if \(\mathrm{ME}(\mathrm{I}, 0)\) is equal to 1 , than it is time to head east (right). This is accomplished by adding one to the ME's new X coordinate (X2).

3436 This time the line checks to see if the directional indicator says to "fly north." If so, this movement will be achieved by subtracting one from the ME's new Y coordinate.

3437 If ME \((\mathrm{I}, 0)\) equals three, then the ME needs to travel west. This is done by summarily decrementing X2. If you find it difficult to visualize how this will result in the ME moving west, take out a piece of graph paper and experiment (keeping the origin in the upper left-hand corner.)

3438 Finally, if the mubble is south (down) in relation to the ME, then by increasing the value of the Mubble Eater's new Y coordinate, the ME will, indeed, move down.

3440 The function of this line, is to see if the ME's new \(\mathrm{X}, \mathrm{Y}\) coordinates ( \(\mathrm{X} 2, \mathrm{Y} 2\) ) are headed out of the maze boundaries. If they are, then the program branches to 3490 where corrective action will be taken.

3445 This instruction is very interesting. Its function is to remember what color the SPace the Mubble Eater is on was before it got there. The SCRN command reads the color off the screen and stores it in SP(I). Then, when the Mubble Eater has vacated its previous spot, the space's original color is restored. This way, the mubble eater does not leave a trail void of foodpoints, and it does not leave a dark blue trail either. To experiment, change line 3445 so that it reads: 3445 COLOR \(=9\), or 3445 COLOR \(=2\) or 3445 COLOR \(=0\). After making the change, run the program. Perhaps any misunderstandings will become clear.

3460 The foodpoints are plotted in the colors six through nine. This line checks to see if SP(I), which is equal to SCReeN X2, Y2 (see 3447), is a foodpoint or not. If not, \(\mathrm{SP}(\mathrm{I})\) reverts to 0 .

3490 This line checks to see if a Mubble Eater has caught the MUbble. Because the MUbble occupies three spaces, the test has to verify the Mubble Eaters coordinates on the different points. If the coordinates of a Mubble Eater are the same as one of the three sets of MUbble coordinates, then the MUbble is done for. In this program, when the MUbble is eaten, recorded by setting HI (for HIt) to one.

3495 The NEXT statement ends each pass of the loop begun on line 3400 . When \(I=3\), this instruction ends the loop.

3990 RETURN completes the GOSUB. If this statement is omitted, the computer will stop the run to inform you of the error.

4000 This line merely serves to make 4001 more readable.
4001 This REMark tells us that the following lines comprise the *** END routine.

4002 A filler.
4010 (two instructions) HOME clears the four lines reserved for text. Next, the end-of-game message is printed.

4015 A test is run to see if you scored all 64 points. If you have, the message between the quotes is printed, and then the RETURN statement returns the program to line 50 and then line 60.

4020 The number of foodpoints you score is contained in location PT.
Assuming 4015 was an invalid conditional, 4020 will print the exact message you have between the quotes, followed by the contents of the variable PT, and finally, the second half of the message which is between the quotes, will be printed precisely as it was written.

4990 If and when line 4020 is finished, this line RETURNs the program to line 50 . Then the program continues on to line 60 , where the flow is ended.

```

10 REM ********************
11 REM **** ***
12 REM *** MUBBLE CHASE ***
13 REM *** %**
1 4 REM ********************
15 REM
1G REM
20 GOSUB 1000: REM INSTS
30 GOSUB 2000: REM SETUP
40 GOSUB 3000: REM PLAY!
50 GOSUB 4000: REM !END!
G0 END
1000:
1001 REM *** INSTS
1002:
1010 TEXT : NORMAL : HOME
1020 UTAB 2: HTAB 10: PRINT "***
MUBBLE CHASE ***"
1025 UTAB 5
1030 PRINT "IN THIS EXCITING GAM
E, YOU CONTROL THE MOUEMENT
OF THE HUNGRY LITTLE CREATU
RE WE CALL THE MUBBLE, THE
MUBBLE SCURRIESTHROUGH A MA
ZE, TRYING TO EAT UP ALL OF
THE FOOD POINTS."
1035 PRINT
1040 PRINT "UNFORTUNATELY, THERE
ARE THREE MUBBLE - EATERS I
N THE SAME MAZE, WHO WANT TO
CATCH AND EAT THE POOR M
UBBLE."
1050 UTAB 23: INPUT "HIT RETURN
WHEN READY TO CONTINUE: ":A
NS\$
10G0 HOME : UTAB 2: HTAB 10: PRINT
"*** MUBBLE CHASE ***": UTAB
5
1070 PRINT "YOU MUST MANEUVER TH
E MUBBLE TO THE FOODPOINTS A
ND AWAY FROM THE MUBBLE EATE
RS. YOU ARE ALLOWED TO LOSE
TWD MUBBLES, BUTWHEN THE THI
RD MUBBLE IS EATEN, THE GAME
IS DUER."

```
```

1075 PRINT
1080 PRINT "MOUEMENT OF THE MUBB
LE IS CONTROLLED BY USING TH
E LETTERS I, J, K, AND M."
1090 HTAB 18: PRINT "UP": PRINT
: HTAB 19: PRINT "I": PRINT
1091 PRINT " LEFT - J
K - RIGHT": PRINT
1092 HTAB 19: PRINT "M": PRINT:
HTAB 18: PRINT "DOWN"
1100 UTAB 23: INPUT "HIT RETURN
WHEN READY TO CONTINUE: ":A
NS多
1990 RETURN
2000:
2001 REM *** SETUP
2002:
2015 DIM ME(3,2),5P(3)
2030 PT = 0:MU = 3
2040 GR : HOME
2041 COLOR= 15
2042 HLIN 0.38 AT 0: HLIN D.38 AT
38
2043 ULIN 0.38 AT 0: ULIN 0.38 AT
38
2050 COLOR=1
2051 FOR I = 2 T0 34 STEP 4
2052 FOR J = 2 T0 34 STEP 4
2053 FOR K = I TO I + 2
2054 HLIN J.J + 2 AT K
2055 NEXT K.J.I
2060 DIM MU(3,2)
2070 FOR I = 5 TO 33 STEP 4
2071 FOR J = 5 T0 33 STEP 4
2072 COLOR= INT (RND (1) * 4) +
G
2073 PLOT I,J
2074 NEXT J,I
2990 RETURN
3000:
3001 REM *** PLAY
3002:

```

\(3005 \operatorname{ME}(1,1)=1: \operatorname{ME}(1,2)=1: \operatorname{ME}(2\) , 1) \(=37: \operatorname{ME}(2,2)=1: \operatorname{ME}(3,1)\) \(=37: \operatorname{ME}(3,2)=37: \operatorname{ME}(1,0)=\)
\(1: \operatorname{ME}(2,0)=4: \operatorname{ME}(3,0)=3\)
300G COLOR = 2: FOR I = 1 TO 3: PLOT
\(\operatorname{ME}(I, 1), \operatorname{ME}(I, 2): \operatorname{NEXT}: M D=\) \(1: H I=\emptyset\)
\(3007 \mathrm{MU}(1,1)=1: M U(1,2)=37: M U(\)
\(2,1)=2: M U(2,2)=37: M U(3,1\)
) = \(3: M U(3,2)=37: M X=3: M Y\)
= 37: COLOR \(=4: F O R I=1 \mathrm{TO}\)
3: PLOT MU(I,1), MU(I,2): NEXT
\(3010 \mathrm{MU}=\mathrm{MU}-1:\) IFMU MU THEN RETURN
3012 COLOR \(=0:\) HLIN 0.39 AT 39: COLOR= 15: IF MU \(>\emptyset\) THEN FOR \(I=1\) TO

MU: PLOT I * 2,39: NEXT I
3015 HOME : PRINT: PRINT "
<<< READY .... >>>" FOR
\(I=1\) TO 2000: NEXT I: HOME
3020 GOSUB 3300: REM MOUE MUB
3025 IF PT \(=\) G4 THEN RETURN
3030 GOSUB 3400: REM MOVE MUB E ATERS
3040 IF NOT HI THEN 3020
3041 FOR I = 1 TO GO:XX = PEEK ( - 16336): NEXT
\(3045 \mathrm{FOR} \mathrm{I}=1 \mathrm{TO} 3: \mathrm{COLOR}=5 \mathrm{P}\) (I
): PLOT ME(I,1),ME(I,2):SP(I
) = ©: NEXT
3050 PLOT MU(1,1),MU(1,2): PLOT \(\operatorname{MU}(2,1)\), \(\operatorname{MU}(2,2): \operatorname{PLOT} \operatorname{MU}(3,1\) ) \(\mathrm{MU}(3,2)\)
3055 GOTD 3005
\(3065 \mathrm{MU}(1,1)=1: M U(1,2)=37: M U(\)
\(2,1)=2: M U(2,2)=37: M U(3,1\)
) \(=3: M U(3,2)=37: M X=3: M Y\)
= 37: COLOR=4: FOR \(I=1 \mathrm{TO}\)
3: PLOT MU(I,1),MU(I,2): NEXT
\(3300 \mathrm{FL}=((M X+3) / 4)=\) INT
\(((M X+3) / 4))\) AND \(((M Y+3\)
\() / 4)=\operatorname{INT}((M Y+3) / 4\)
\())\)
3301 IF NOT FL THEN 3320
3304 IF PEEK ( - 16384) < 128 THEN
    3320
\(3305 \mathrm{KEY}=\) PEEK ( -16384 ) - 128
3310 IF \(\mathrm{KEY}=73\) THEN MD = 2: GOTO
        3319
3311 IF KEY = 75 THEN MD = 1: GOTO
        3319
3312 IF KEY \(=77\) THEN MD \(=4:\) GOTO
        3319
3313 IF KEY = 74 THEN MD = 3: GOTO
        3319
3315 GOTO 3320
3319 POKE - 16368.0
\(3320 \mathrm{K2}=\mathrm{MX:Y2}=\mathrm{MY}\)
3321 IF MD \(=1\) THEN \(\mathrm{X} 2=\mathrm{X} 2+1:\)
        GOTO 3330
3322 IF MD \(=2\) THEN \(Y 2=Y 2-1:\)
        GOTO 3330
3323 IF MD \(=3\) THEN \(X 2=X 2-1:\)
        GOTO 3330
3324 IF MD \(=4\) THEN \(Y 2=Y 2+1:\)
        GOTO 3330
3330 IF X 2 < 1 OR X 2 > \(37 \mathrm{OR} Y 2\) <
        1 OR Y2 > 37 THEN RETURN
3337 IF SCRN \((X 2, Y 2)=4\) THEN 3
        345
3340 IF SCRN \((X 2, Y 2)<>\emptyset\) THEN
        \(X X\) = PEEK ( - 16336) + PEEK
        ( - 16336) - PEEK ( - 16336
        ) + PEEK ( - 16336):PT = PT
        + 1: IF PT = 64 THEN RETURN
3345 COLOR= 0: PLOT MU(1,1), MU(1
        ,2): COLOR= 4: PLOT XZ,Y2:MU
        \((1,1)=\operatorname{MU}(2,1): \operatorname{MU}(2,1)=M U\)
        \((3,1): M U(1,2)=\operatorname{MU}(2,2): M U(2\)
        ;2) \(=\operatorname{MU}(3,2)\)

```

3350 MU(3,1) = X2:MU(3,2) = Y2:MX

```
        \(=\mathrm{K}:\) MY \(=\) Y2: RETURN
3400 FOR I \(=1\) TO 3
\(3402 \mathrm{FL}=((\mathrm{ME}(\mathrm{I}, 1)+3) / 4)=\mathrm{INT}\)
    (( \((\operatorname{ME}(I, 1)+3) / 4))\) AND (
    \(\operatorname{ME}(I, 2)+3) / 4)=I N T((1\)
    \(\operatorname{ME}(1,2)+3) / 4)\) )
3405 IF NOT FL THEN 3430
3407 ON INT (RND (1) * E) +1 GOTD
    \(3410,3410,3410,3420,3430,343\)
    0
\(3410 \mathrm{ON} \operatorname{INT}(\mathrm{RND}(1) * 2)+1\) GOTO
    3411.3413
3411 IF \(M X\) < \(M E(I, 1)\) THEN ME(I, 0
    ) = 3: GOTD 3430
3412 IF MX > ME(I,1) THEN ME(I, \(\emptyset\)
    ) = 1: GOTO 3430
3413 IF MY \& ME(I,2) THEN ME(I, 0
    ) = 2: GOTO 3430
3414 IF MY \(>\operatorname{ME}(I, 2)\) THEN ME(I, \(\varnothing\)
        ) = 4: GOTD 3430
\(3420 \mathrm{ME}(\mathrm{I}, 0)=\mathrm{INT}(\mathrm{RND}(1) * 4\)
    ) + 1: GOTO 3430
\(3430 \times 2=\operatorname{ME}(I, 1): Y 2=\operatorname{ME}(I, 2)\)
3435 IF ME \((I, \boxtimes)=1\) THEN \(\times 2=\times 2\)
        \(+1: \operatorname{GOTO} 3440\)
3436 IF ME \((I, \varnothing)=2\) THEN Y2 \(=Y 2\)
        - 1: GOTO 3440
    3437 IF ME \((I, 0)=3\) THEN \(\times 2=\times 2\)
        - 1: GOTO 3440
    3438 IF ME \((I, \varnothing)=4\) THEN \(Y 2=Y 2\)
        + 1: GOTO 3440
    3440 IF \(\mathrm{X} 2<1\) OR \(\mathrm{X} 2>37\) OR Y2 <
        1 OR Y2 > 37 THEN 3490
    \(3445 \mathrm{COLOR}=5 \mathrm{~S}(\mathrm{I}): \operatorname{PLOT} \operatorname{ME}(\mathrm{I}, 1)\),
        \(\operatorname{ME}(I, 2): S P(I)=5 C R N(X 2, Y 2\)
        ): COLOR= 2: PLOT X2,Y2:ME(I
        ,1) \(=\mathrm{K} 2: M E(I, 2)=Y 2\)
3460 IF SP(I) < E THEN SP(I) \(=\emptyset\)
```

3490 IF (ME(I,1) = MU(1,1) AND M
E(I,2) = MU(1,2)) OR (ME(I,1
) = MU(2,1) AND ME(I,2) = MU
(2,2)) OR (ME(I,1) = MU(3,1)
AND ME(I,2) = MU(3,2)) THEN
HI = 1
3495 NEXT : RETURN
3990 RETURN
4000:
4001 REM *** END
4002:
4010 HOME : PRINT "THE GAME IS 0
UER !!!"
4015 IF PT = G4 THEN PRINT "YOU
GOT ALL THE POINTS (YOU WIN
!!)": RETURN
4020 PRINT "YOU SCORED "PT" POIN
TS.....GOOD EFFORT"
4990 RETURN

```



This game requires good timing. You are the pilot of a B19 Bomber trying to sink enemy ships. The graphics used in this game are simple but effective. To illustrate the point, run the program. The plane is green, the ship is purple, and the water is blue. In order to demonstrate how these three distinct forms are drawn, you will need to stop running the game (by typing Ctrl C). Type: LIST-3000. This command will list all of the program lines through (-) 3000, including 3000 (if it exists). Line 2060 sets the water to color = 2 (dark blue). Change this line to color \(=6\) or color \(=12\). After you are done experimenting, change 2060 back to its original configuration. Lines 2070 and 2080 instruct the computer where to draw the water, and how long to make it. To test this, change 2070 so it reads HLIN 0,20 AT 39, and then run the program. Likewise, experiment with line 2080. Next type: LIST-4000. To determine the function of lines 3100-3300, make changes in these statements and then run the program. The various subroutines are identified with remarks. If you would like to experiment with any of these routines, please do. Don't worry about making program changes. Your modified program will disappear when you turn off your computer or reload the program from the diskette. Unless you type: SAVE AIR ATTACK, none of the changes which you make will affect the program that is stored on the diskette. You should always save any modified versions you create under a new name such as AIR ATTACK 1, AIR ATTACK 2, or even 'JOE'S PROGRAM.'


```

1120 INPUT "PRESS *RETURN* TO CO
NTINUE : "AN\&
1130 HOME: UTAB 3: HTAB 11: PRINT
"*** AIR ATTACK ***": UTAB 7
1140 PRINT "YOU HAVE AN ARSENAL
OF 15 BOMBS. THE SPEED OF
EACH SHIP WILL UARY, 50 MAK
E EVERY SHOT COUNT! "
1150 PRINT : PRINT "GOOD LUCK !!
!"
11G0 UTAB 23
1170 INPUT "PRESS *RETURN* TO CO
NTINUE : ":ANक
1180 RETURN
2000:
2010 REM *** SETUP
2020
2030 SL = 15
2040 REM LINE 2020 DRAWS THE W
ATER
2050 GR
20G0 COLOR=2
2070 HLIN 0.39 AT 39
2080 HLIN 0.39 AT 38
2090 AX = 0:5X=33:55=1
2100 RETURN
3000:
3010 REM *** PLAY
3020:
3030 HOME
3040 UTAB 22: CALL - 958: PRINT
"SHOTS LEFT: "SL" SCORE:
"TS

```

```

3050 GOSUB 3090: REM PLANE
3060 GOSUB 3130: IF SL = 0 THEN
RETURN
3070 GOSUB 3270: REM SHIP
3080 GOTO 3050
3090 COLOR= D: HLIN AX:AX + G AT
2: HLIN AX + 1,AX + G AT 1: PLOT
AX + G:O

```

3100 REM LINE 3110 CHECKS TO 5
EEIF THE PLANE IS AT POSITIO N-1. IF SO. THE PLANE IS 0 FF THE SCREEN. AX REUERTS T - 33. THE RIGHT HAND SIDE 0 F THE PICTURE, FROM THERE T HE CYCLE BEGINS AGAIN.
\(3110 A X=A X-1:\) IF \(A X=a 0\) THEN \(A X=33\)
3120 COLOR \(=4:\) HLIN AX, AX + E AT 2: HLIN AX + 1,AX + G AT 1: PLOT \(A X+G: D:\) RETURN
3130 IF FF THEN 3160
3140 IF PEEK \((-16384)=a 128\) THEN RETURN
\(3150 \mathrm{FF}=1:\) POKE \(-16368,0: F X=\) \(A X+3: F Y=2\)
3160 COLOR= ©: PLOT FX,FY
\(3170 \mathrm{FY}=F Y+1\)
3180 IF SCRN \((F X, F Y)=\emptyset\) THEN COLOR \(=\) 13: PLDT FX,FY: RETURN
3190 IF SCRN \((F X, F Y)=2\) THEN 3 230
\(3200 \mathrm{~T}=\mathrm{T} 5+(38-\mathrm{FY}) * 10\)
\(32105 C=0:\) COLOR \(=0:\) HLIN SX,5X
+ 6 AT 37: HLIN 5X + 3.5X +
5 AT 3G: PLOT \(5 X+4.35\)
\(32205 X=33: 55=1: 5 C=0\)
3230 COLOR= 2: HLIN FX - 1,FX +
1 AT 37: PLOT FX - 2.3G: PLOT
FX,3G: PLOT FX + 2,3G: PLOT
FX - 3.35: PLOT FX,35: PLOT
\(F X+3.35\)
3240 COLOR \(=0:\) HLINFX \(-1, F X+\) 1 AT 37: PLOT FX - 2.3G: PLOT
FX,36: PLOT FX + 2,36: PLOT
FX - 3:35: PLOT FX,35: PLOT
\(F X+3.35\)
3250 FF \(=0: 5 L=5 L-1:\) POKE -
16368 , 0
32GD UTAB 22: CALL - 958: PRINT "SHOTS LEFT: "SL" SCORE: "TS: RETURN
```

$32705 C=5 C+1:$ IF $5 C=a 55$ THEN
RETURN

```
3280 5C = \(0:\) COLOR \(=0:\) HLIN \(5 X, 5 X\)
    + 6 AT 37: HLIN SX + 3.5X +
    5 AT 36: PLOT SX +4.35
\(32905 X=5 X+1: I F 5 X=A 33\) THEN
    \(5 X=\emptyset: 55=\) INT (RND (1) *
    3) \(+1: 5 C=55\)
3300 COLOR \(=1:\) HLIN \(5 \times, 5 X+6\) AT
    37: HLIN 5X + 3.5X + 5 AT 3G
    : PLOT SX + 4.35: RETURN
\(4000:\)
4010 REM *** END
\(4020:\)
4030 HOME : PRINT "THE GAME IS D
    UER ": PRINT "YOUR SCORE DF
    "TS" IS "
4040 IF TS =a 25 THEN PRINT "ROT
    TEN !!!": RETURN
4050 IF TS = a 50 THEN PRINT "BAD
            !!!": RETURN
4060 IF TS =a 75 THEN PRINT "POO
        R !!!": RETURN
4070 IF TS =a 100 THEN PRINT "FA
    IR ...": RETURN
4080 IF TS =a 150 THEN PRINT "GD
        OD...": RETURN
4090 IF TS =a 250 THEN PRINT "GR
        EAT !!!": RETURN
4100 IF TS =a 450 THEN PRINT "FA
        NTASTIC !!!": RETURN


To play Picasso, you must have a brush (paddle). It is always a good idea to play a game before you attempt the analysis. Load the program and type: LIST -1000 . From this you will see where the subroutines begin. The first subroutine controls the messages and instructions you see before each run. To see how the program really works, list 3000-3040. To see how any instruction functions, type the line number with nothing after it. This deletes both the line and the line number. The lack of some attribute will reveal the line's purpose. Look at line 3003. This line instructs the computer to draw sixteen squares (points) at specific intervals. Line 3005 labels each color with a corresponding letter. Line 3020 merits an explanation. PEEK ( -16384 ) instructs the computer to "survey" the keyboard. That is, the computer checks to see if any key has been pressed. Every keyboard character has a numeric equivalent. These numeric values are known as ASCII values and begin (for keyboard characters) at 128. Therefore, if PEEK (-16384) is less than 128, no key has been pressed. Line 3040 is a logical extension of 3020 . The ASCII value for ' \(A\) ' must be 193, and the ASCII value for ' P ' must be 208. So, if the KEY that was pressed was \(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D} . \ldots . . \mathrm{O}, \mathrm{P}\), then the color is changed to the corresponding shade. If you type \(3040<\) RETURN \(>\), the colors can no longer be chosen. Typing RUN ARTIST BOARD loads in a fresh copy of the program with everything working normally.

The noteworthy feature of the program loop (lines 3010 to 3090) is that it checks the game paddles and the keyboard at each pass. You can draw all day with the paddles but always be able to perform program functions by pressing
appropriate keys. You can use a loop like this in lots of games and other applications to allow for full use of the paddles and keyboard to control the program.

Lines 3110 and 3210 are interesting because they issue disk commands from a print statement by the use of CHR\$ (4) which is CONTROL D. The BSAVE and BLOAD commands are followed by the location in memory which holds the contents of the low resolution graphics screen one.

Line 3010 is the heart of the program loop. The game paddles yield values from 0 to 255 . This number has to be divided by a factor which will yield numbers from 0 to 39 since these are the limits of the low resolution screen. The INT function delivers whole numbers which are also required. After \(X\) and Y are read from the paddles a single small square is plotted in the color determined by line 1340 . This color is then read off the screen by the SCRN function and stored in ' C '. Next the color is changed to white (15) and the square replotted in white. Next comes a short delay loop to slow down the cycle and the blink rate. After this wait, the color is reassigned as ' \(\mathrm{C}^{\prime}\) and replotted. The effect is a square which marks the location of the paddles by blinking between white and the selected color. The selected color is generated before and after the white square so that you will always leave the right color behind even if you move the paddles fast. Try putting the parts of this line in a different order and see what a colorful hash results.
\begin{tabular}{|c|c|c|c|c|}
\hline 10 & REM & \multicolumn{3}{|l|}{********************} \\
\hline 11 & REM & *** & & *** \\
\hline 12 & REM & *** ARTIST & BOARD & *** \\
\hline 13 & REM & *** & & *** \\
\hline 14 & REM & \multicolumn{3}{|l|}{********************} \\
\hline 15 & \multicolumn{4}{|l|}{REM} \\
\hline 16 & \multicolumn{4}{|l|}{REM} \\
\hline 20 & GOSUB & 1000: REM & INSTS & \\
\hline 40 & G0SUB & 3000: REM & PLAY & \\
\hline 50 & GOSUB & 4000: REM & ! END & \\
\hline G0 & \multicolumn{4}{|l|}{END} \\
\hline 1000 & - & & & \\
\hline 1001 & REM & \multicolumn{3}{|l|}{*** INSTS} \\
\hline 1002 & 2 & & & \\
\hline 1010 & \multicolumn{4}{|l|}{TEXT: HOME : NORMAL} \\
\hline 1020 & \multicolumn{4}{|l|}{UTAB 3: HTAB 10: PRINT} \\
\hline \multicolumn{5}{|c|}{ARTIST BOARD ***"} \\
\hline
\end{tabular}
```

1030 UTAB 7: PRINT "BY USING ART
IST BOARD AND YOUR CREATIUE
TALENT, YOU CAN CREATE PICTU
RES IN LOW- RESOLUTION COLOR
.": PRINT
1040 PRINT : PRINT "THE GAME PAD
DLES ARE USED TO MOVE THE
COLORED CURSOR (YOUR PAINT B
RUSH). THE TOOLS ARE THERE
FOR YOU TO DESIGN UERY ELAB
ORATE PICTURES....GO TO IT !
"
1042 PRINT : PRINT "YOU MAY SAU
E A DRAWING ONTO DISK FOR
RECALL AT A LATER TIME."
1050 UTAB 23: INPUT "HIT RETURN
WHEN READY TO CONTINUE : ";A
NS*
1990 RETURN
3000:
3001 REM *** PLAY!
3002:
3003 GR : FOR I = 1 TO 16: COLOR=
I: PLOT I * 2,39: NEXT
3005 HOME : PRINT " A B C D E F
G H I JK L M N O P": PRINT
"TYPE IN CHOICE TO CHANGE CO
LOR": PRINT "TYPE 'R' TO REC
ALL, 'S' TO SAUE,": PRINT "'
Q' TO QUIT, 'X' TO ERASE";
3010X = INT (PDL (0) / 6.5):Y =
INT (PDL (1) / 6.7): PLOT
X:Y:C = SCRN(X,Y): COLDR=
15: PLOT X,Y: FOR I = 1 TO 5
0: NEXT I: COLOR= C: PLOT X,
Y
3020 IF PEEK (- 16384) < 128 THEN
3010
3030 KEY = PEEK (- 16384): POKE
- 16368,0
3040 IF KEY > = 193 AND KEY < =
208 THEN COLOR= (KEY - 192)
: GOTO 3010

```
```

3050 IF KEY = 211 THEN 3100
3060 IF KEY = 210 THEN 3200
3070 IF KEY = 209 THEN RETURN
3080 IF KEY = 216 THEN 3003
3090 GOTO 3010
3100 HOME : INPUT "SAVE AS WHAT
FILE: ":FI官
3105 IF FI串 = "" THEN 3005
3110 PRINT CHR\& (4)"BSAUE "FI\$"
,A\$400,L$400": GOTO 3005
3200 HOME : INPUT "RECALL WHAT F
 ILE : ":FI$
3205 IF FI\$ = "" THEN 3005
3210 PRINT CHR\$ (4)"BLDAD "FI\$"
*A\$400": COLOR= @: GOTD 3005
3990 RETURN
4000:
4001 REM *** !END!
4002:
4010 TEXT : HOME : RETURN

```



This game is straightforward. Its use of colors and all graphics makes it a good exemplary program. Type: LOAD BARREL OF FUN, then list through line 2030. To see how each line works, change lines 2020-2029 as follows:


Run the program after each change to see the new effect. These previously meaningless statements can be understood by using this technique. The following chart will clarify the function of each line:

LINE COMMAND
2020 UTAB 23

2021 CALL -958

\section*{FUNCTION}

The computer tabs down 23 lines from the top of the screen

Clears the text beginning at the cursor and continuing through to the bottom margin

2022 GR
2023 COLOR \(=5\)
2024 FOR I \(=0\) TO
18 STEP 6

2025 HLIN 11.29
AT I

2026 NEXT
2027 FOR I \(=0\) to
18 STEP 6
2028 ULIN 0.36
AT I

2029 NEXT

Switches from the text mode (black and white) into the graphics mode (color)

Until further notice, all printing will be done in gray (color=9)

Begins a loop which starts with \(I=0\) with \(I\) being incremented by six each time a pass is completed

Draws a horizontal line from column 11 to column 29, on line I

Completes each pass of the loop begun at line 2024
(see line 2024)

Draws a vertical line beginning at row 0 and continuing to row 36 . The line will be drawn at column I

Completes each pass of the loop begun at line 2027

11 REM *** ***
12 REM *** BARREL OF FUN **
13 REM *** ***
14 REM \(\mathrm{RE}^{* * * * * * * * * * * * * * * * * * * ~}\)
15 REM
16 REM
20 GOSUB 1000: REM INSTS
30 GOSUB 2000: REM SETUP
40 GOSUB 3000: REM PLAY!
GD END
\(1000:\)
1001 REM *** INSTS
\(1002:\)
1010 TEXT: NORMAL: HOME
1020 UTAB 3: HTAB 10: PRINT "*** BARREL OF FUN ***"
1030 UTAB 7
1031 PRINT "IN BARREL OF FUN* YO \(U\) WILL SEE THREE COLUMNS OF SIX CQLORFUL SQUARES. TH E OBJECT";
1032 PRINT " OF THE GAME IS TO A LIGN THE ROWS SUCH THAT EACH ROW IS ONE SOLID COLDR. TH ERE ARE ONLY TWO PURPLE SQUA RES. THE BLACK SQUARE MUST EUENTUALLY COMPLETE THE PU RPLE ROW."
1040 PRINT: PRINT "THE BOARD OF SQUARES WILL BE MIXED UP,
AND YOUR TASK IS TO UNSCRAMB LE IT. THE FINAL PRODUCT SH OULD HAUE ALL OF THE SQUA RES OF ONE COLOR LINED UP IN A HORIZONTAL ROW.
1050 PRINT: PRINT "A SAMPLE OF HOW THE FINISHED PRODUCT SHOULD LOOK WILL BE SHOWN TO YOU. "
10ED PRINT: INPUT "HIT RETURN W HEN READY TO CONTINUE: ":AN 5串

1070 HOME: UTAB 3: HTAB 10: PRINT
    "*** BARREL OF FUN ***": UTAB
    7
1080 PRINT "EACH COLUMN OF SQUAR
    ES (COLUMNS 1,2,3) CAN BE R
    OTATED VERTICALLY BY ENTERIN
    G THE NUMBER OF THE COLUMN
        YOU WISH TO ROTATE"
1090 PRINT : PRINT "YOU CAN MOUE
        COLORED SQUARES INTO THE
        EMPTY SQUARE BY USING THE AR
        ROWS ON THE KEYBOARD. IF TH
        E COLORED SQUARE IS TO BE M
        QUED TO THE EMPTY SQUARE ON
        ITS RIGHT, THEN PRESS TH
        E RIGHT ARROW.
1100 PRINT : PRINT "IF THE COLOR
    ED SQUARE IS TO BE MOUED TO
    THE EMPTY SQUARE ON ITS LEFT
        , THEN PRESSTHE LEFT ARROW.
    "
1110 UTAB 23: INPUT "HIT RETURN
        WHEN READY TO CONTINUE : ";A
        NS
1120 HOME : UTAB 3: HTAB 10: PRINT
        "*** BARREL OF FUN ***": UTAB
        7
1130 PRINT "NOTE THAT IN THE FIN
        AL SOLUTION ALL HORIZONT
        AL ROWS MUST be the same col
        DR. "
1140 PRINT : PRINT "IT DOESN'T M
        ATTER WHERE THE ROW IS
        LOCATED, AS LONG AS ALL DF T
        HE COLORS WITHIN THE ROW A
        RE THE SAME. "
1150 UTAB 23: INPUT "HIT RETURN
        WHEN READY TO CONTINUE : ";A
        NS
1990 RETURN
\(2000:\)
2001 REM *** SETUP
\(2002:\)

2010 DIM BA（3，G），CO（G）：FOR I＝ 1 TO E：READ CO（I）：NEXT ：DATA \(1,8,11,12,15,3: B E L L \$=\operatorname{CHR}\) क （7）
2015 FOR \(I=1\) TO E：FOR \(J=1 \mathrm{TO}\) \(3: B A(J, I)=C O(I): N E X T J: I:\)
\(B A(3, G)=\emptyset: B X=3: B Y=E\)
2020 UTAB 23
2021 CALL－ 958
2022 GR
2023 COLOR \(=5\)
2024 FOR I \(=0\) TD 36 STEP \(G\)
2025 HLIN 11.29 AT I
2026 NEXT
\(2027 \mathrm{FOR} \mathrm{I}=0 \mathrm{TO} 18\) STEP G
2028 ULIN 0.36 AT \(1+11\)
2029 NEXT
2030 FOR I＝ 1 TO 3：GOSUB 2500： NEXT I
2100 HOME：HTAB 5：PRINT＂《く＜T HIS IS THE FINAL PATTERN \(\ggg\) ＂：FOR I＝ 1 TO 2000：NEXT I

2110 HOME ：HTAB 3：PRINT＂くくく I ＇M NOW SCRAMBLING THE BOARD ＞＞＞＂
\(2120 \mathrm{FOR} N=1 \mathrm{TO}\) INT（RND（1） ＊ 10\()+20\)
2130 IF \(B X=3\) THEN \(R X=2:\) GOTO 2140
2131 IF \(B X=1\) THEN RX \(=2:\) GOTO 2140
\(2132 \mathrm{RX}=\mathrm{INT}(\mathrm{RND}(1) * 2) * 2\) \(+1\)
2140 FOR L \(=1\) TO INT（ RND（1） ＊5）＋1：FOR \(M=1\) TD E：BA \((R X, M-1)=B A(R X, M): N E X T\) \(M: B A(R X, E)=B A(R X, D): I=R X\) ：NEXT L：GOSUB 2500
\(2145 B A(B X, B Y)=B A(R X, B Y): B A(R X\), \(B Y)=\emptyset\)
2150 \(I=B X: J=B Y:\) GOSUB 2510
\(2155 B X=R X: I=B X: J=B Y: G O S U B\) 2510

```

2160 NEXT N: RETURN
2200 RETURN
2500 FOR J = 1 TO 6: GOSUB 2510:
NEXT J: RETURN
2510 COLOR= BA(I;J): FOR K = \emptyset TO
4: HLIN (I + 1) * E,(I + 1) *
6 + 4 AT (J * G) - 5 + K: NEXT
K: RETURN
2990 RETURN
3000:
3001 REM *** PLAY
3002:
3010 HOME : PRINT "(TYPE 1 TO RO
TATE COLUMN 1, 2 FOR)(
COLUMN 2, 3 FOR COLUMN 3, RI
GHT ARROW)(TO SHIFT RIGHT,
LEFT ARROW FOR LEFT)";
3020 IF PEEK (- 16384) < 128 THEN
3020
3025 KEY = PEEK (- 16384): POKE
- 16368,0
3030 IF KEY = 177 OR KEY = 178 OR
KEY = 179 THEN 3100
3035 IF KEY = 136 THEN 3050
3040 IF KEY = 149 THEN 3075
3045 PRINT BELL\&: GOTO 3010
3050 RX = BX + 1: IF RX = 4 THEN
PRINT BELLक: GOTO 3010
3055 BA(BX,BY) = BA(RX,BY):BA(RX,
BY) = \emptyset
3060 I = BX:J = BY: GOSUB 2510:BX
= RX:I = BX:J = BY: GOSUB 2
510
3065 GOTO 3500
3075 RX = BX - 1: IF RX = @ THEN
PRINT BELLक: GOTO 3010
3080 BA(BX,BY) = BA(RX,BY):BA(RX,
BY) = \emptyset
3085 I = BX:J = BY: GOSUB 2510:BX
= RX:I = BX:J = BY: GOSUB 2
510
3090 GOTO 3500
3100 RX = KEY - 176

```
```

3110 FOR M = 1 TO G:BA(RX,M - 1)
= BA(RX,M): NEXT M:BA(RX,G)
= BA(RX,0):I = RX: GOSUB 25
OD
3120 IF RX = BX THEN BY = BY - 1
: IF BY = O THEN BY = G
3125 GOTD 3500
3500 BA(BX,BY) = 3: FOR I = 1 TO
G
3510 IF BA(1,I) = BA(2,I) AND BA
(2,I) = BA(3,I) THEN NEXT I
: RETURN
3520BA(BX,BY) = D:TRY = TRY + 1:
GOTO 3010
3990 RETURN
4000:
4001 REM *** END
4002:
4010 HOME : PRINT BELL\&BELL\$"THE
GAME IS QUER !!!": PRINT "Y
OU DID IT IN "TRY" TRIES ...
": END
4990 RETURN

```

\[
8+0
\]


In this game you try to draw a longer line than your opponent. If your progress is impeded either by a border or by the opponent's line, you lose. This is a two man game. List through line 2125. The POKEs constitute an allpurpose sound routine which is explained in STARDODGER. Experiment with any of the lines on the screen. Line 2125 will be described in detail. HLIN stands for Horizontal LINe. A line has 40 characters ( \(0-39\) ), so the numbers 18,22 specify where the line will begin (at 18) and where the line will end (at 22). AT 18 specifies which line (on the \(Y\), or vertical axis) receives the horizontal line. Next, another horizontal line is called for. It is to travel from 18 to 22 and is drawn on line 21.The colon (:) serves the same function as a new line and line number. In other words, a colon marks the end of one instruction and the beginning of another. To save space, many instructions may be clumped onto one line. Line 3010 draws the new position of both players. Change 3010 to read: 3010 COLOR = 1:PLOT X1,Y1:COLOR = 2:PLOT X2,Y2. Now when you run the program, the color of Player \#1's line will be magenta \((C O L O R=1)\) and the color of Player \#2's line will be deep blue \((C O L O R=2)\).
```

10 REM ********************
11 REM **** ***
1 2 REM *** BLOCK 'EM ***
1 3 REM **** ***
14 REM ********************
15 REM
1G REM
20 GOSUB 1000: REM INSTS
30 GOSUB 2000: REM SETUP
40 GOSUB 3000: REM PLAY!
50 GOSUB 4000: REM !END!
GO END
1000:
1001 REM *** INSTS
1002:
1010 TEXT : NORMAL: HOME
1020 UTAB 2: HTAB 12: PRINT "***
BLOCK 'EM ***"
1030 UTAB 5
1031 PRINT "IN THIS GAME, TWO PL
AYERS CONTROL THE CREATION
OF A LINE."
1032 PRINT
1040 PRINT "THE FIRST PLAYER WHO
SE LINE HITS A WALL,OR THE O
THER PLAYER'S LINE,LDSES THE
GAME."
1050 PRINT : PRINT "PLAYER \#1
DIRECTION PLAYER \#2": PRINT
1051 PRINT " W UP
I": PRINT
1052 PRINT "A 5 LEFT
RIGHT J K": PRINT
1053 PRINT " Z DOW
N M"
1090 UTAB 23: INPUT "HIT RETURN
WHEN READY TO CONTINUE: ":A
NS串
1990 RETURN
2000:
2001 REM *** SETUP
2002:

```

2010 POKE 768,173: POKE 769,48: POKE 770,192: POKE 771,136: POKE 772,208: POKE 773:4: POKE 77 4.198: POKE 775.1: POKE 776. 240
2015 POKE 777,8: POKE 778,202: POKE 779.208: POKE 780,246: POKE

781,166: POKE 782:0: POKE 78 3.76: POKE 784,0: POKE 785.3 : POKE 786,96
2020 GR: HOME: COLOR= 15: HLIN 0.39 AT 0: HLIN 0.39 AT 39: ULIN 0.39 AT 0: ULIN 0.39 AT 39

2021 PRINT "PLAYER \#1
PLAYER \#2"
\(2025 \times 1=\operatorname{INT}(\operatorname{RND}(1) * 5)+1\)
\(: Y 1=\) INT ( RND (1) * 10) +
\(10: \times 2=38-\) INT (RND (1) *
5):Y2 = INT ( RND (1) * 10) \(+10: D 1=1: D 2=3\)
2030 FOR I \(=1\) TO E: READ N:D: POKE ©,N: POKE 1,D: CALL 7G8: NEXT I: DATA \(110,75,70,75,55,75,4\)
\(5,200,55,100,45,255\)
2100 FOR I = 5 TO 1 STEP - 1: COLOR=
0: FOR J= 18 TO 22: ULIN 18
,24 AT J: NEXT : COLOR= 15: POKE \(0,200:\) POKE 1,5: CALL 768
2110 ON I GOTO 2121,2122,2123,21 24,2125
2121 HLIN 18,22 AT 24: ULIN 18,2 4 AT 20: HLIN 18,20 AT 18: GOTO 2130
2122 HLIN 18,22 AT 18: HLIN 18,2 2 AT 21: HLIN 18,22 AT 24: ULIN 18.21 AT 22: ULIN 21,24 AT 1 8: GOTO 2130
2123 HLIN 18,22 AT 18: HLIN 18,2 2 AT 21: HLIN 18,22 AT 24: ULIN 18.24 AT 22: GOTD 2130

2124 HLIN 18,22 AT 21: ULIN 18:2 1 AT 18: ULIN 18,24 AT 22: GOTO 2130
```

2125 HLIN 18,22 AT 18: HLIN 18,2
2 AT 21: HLIN 18,22 AT 24: ULIN
18,21 AT 18: ULIN 21,24 AT 2
2: GOTO 2130
2130 FOR PA = 1 TO 300: NEXT PA,
I
2135 COLOR= 0: FOR J = 18 TO 22:
ULIN 18,24 AT J: NEXT : COLOR=
15: POKE 0.200: POKE 1:5: CALL
768
2990 RETURN
3000:
3001 REM *** PLAY
3002:
3010 COLOR= 7: PLOT X1,Y1: COLOR=
9: PLOT X2,Y2
3015 NT = 5 + ((MO< 35) * (30 -
INT (MO / 15) * 15))
3020 FOR I = 1 TO NT:KEY = PEEK
(- 16384): IF KEY < 128 THEN
3050
3025 POKE - 16368,0
3030 IF KEY = 193 THEN D1 = 3
3031 IF KEY = 215 THEN D1 = 4
3032 IF KEY = 211 THEN D1 = 1
3033 IF KEY = 218 THEN D1 = 2
3040 IF KEY = 202 THEN D2 = 3
3041 IF KEY = 201 THEN D2 = 4
3042 IF KEY = 203 THEN D2 = 1
3043 IF KEY = 205 THEN D2 = 2
3050 NEXT I
3100 ON D1 GOTO 3110,3120,3130,3
140
3110 X1 = X1 + 1: GOTO 3150
3120 Y1 = Y1 + 1: GOTO 3150
3130 X1 = X1 - 1: GOTO 3150
3140 Y1 = Y1 - 1: GOTO 3150
3150 IF X1 < 1 OR X1 > 38 OR Y1<
1 OR Y1 > 38 OR SCRN(X1,Y1
) < > \# THEN WL = 2: RETURN
3200 ON D2 GOTO 3210,3220,3230.3
240

```
```

3210 K2 = K2 + 1: GOTO 3250
3220 Y2 = Y2 + 1: GOTD 3250
3230 K2 = K2 - 1: GOTD 3250
3240 Y2 = Y2 - 1: GOTO 3250
3250 IF X2< 1 OR X2 > 38 OR Y2<
1 OR Y2 > 38 OR SCRN(X2,Y2
)< > O THEN WL = 1: RETURN
3300 POKE 0,90: POKE 1,30: CALL
7E8:MO = MO + 1: GOTO 3010
4000:
4001 REM *** END
4002:
4010 HOME : PRINT "THE GAME IS 0
VER....": PRINT "PLAYER NUMB
ER "WL" HAS WON THE GAME !!!
"; CHR\& (7): CHR\$ (7): CHR婁
(7)

```
4990 RETURN

\(8\)


This game is an intellectual challenge. Random selections will rarely net you a correct solution. It is a good idea to conceptualize how you intend to achieve your goal. Graphically, this program is straight-forward. Type: LIST-3030. Here are four lines (3010-3030) with which you may experiment. Line 3010 draws the original game board. Lines 3020-3030 have functions which are less apparent but just as important. If you look at lines 3505-3530, they help finish what line 3010 began. Verify the function of line 3525 . It should draw the \(X\) in an occupied square. To check, type in a line 3522 and put STOP after the line number. Do likewise at line 3527 . Now when the program is run, a break at 3522 will occur. When ready to continue, type: CONT. The new picture, which has an X in the center box, will be the result of line 3525. Again a break will occur (at line 3527); type CONT. To exit from the graphics mode, type: TEXT. Unless you SAVE a change, it won't be written to disk, so do not fret about undoing any changes that you make.
```

10 REM ********************
11 REM *******
12 REM *** BRAIN TEASER ***
1 3 REM **** ***
14 REM ********************
15 REM
1G REM
20 GOSUB 1000: REM INSTS
30 GOSUB 2000: REM SETUP
40 GOSUB 3000: REM PLAY!
50 GOSUB 4000: REM !END!
GO END
1000:
1001 REM *** INSTS
1002:
1010 TEXT : NORMAL: HOME
1020 UTAB 3: HTAB 10: PRINT "***
BRAIN TEASER ***"
1030 UTAB E
1031 PRINT "IN THIS GAME YOU ARE
GIUEN A 3 BY 3 GAMEBDARD WI
TH ONE OCCUPIED SPACE (THE
CENTER), THE BOARD WILL
RESEMBLE THIS :"
1040 PRINT : PRINT " - - -": PRINT
" - X -": PRINT " - -
_"
1045 PRINT
1050 PRINT "THE TRICK IS TO MOVE
PIECES SO THAT THE GAME BOA
RD WINDS UP LOOKING LIKE THI
S:"
1055 PRINT
10G0 PRINT " }\times\times
AND
X

```

```

1070 UTAB 23: INPUT "HIT RETURN WHEN READY TO CONTINUE: ":A NS $\$$
1080 HOME: UTAB 3: HTAB 10: PRINT "*** BRAIN TEASER ***": UTAB 7

```
```

1090 PRINT "YOU MAY ONLY MOUE TO
AN OCCUPIED SPACE (A SPACE
WITH AN X ON IT). WHEN YOU
MQUE,CERTAIN SQUARES WIL
L REUERSE THEIRCONDITION (C
HANGE FROM AN X TO A BLANK,
OR UICE-UERSA).
1095 PRINT
1100 PRINT "IF YOU MOVE TO A COR
NER, ALL OF THE ADJACENT
SQUARES REVERSE.
1102 PRINT "IF YOU MOUE TO THE M
IDDLE OF A SIDE, ALLOF THE S
QUARES ON THAT SIDE WILL FLI
P, AND IF YOU CHOOSE THE CE
NTER SQUARE, THAT BOX AND
THE FOUR MIDDLE BOXES WILL
ALL be REUERSED"
1110 UTAB 23
1111 INPUT "HIT RETURN WHEN READ
Y TO CONTINUE : ";ANS*
1120 HOME : UTAB 3: HTAB 10: PRINT
"*** BRAIN TEASER ***": UTAB
7
1130 PRINT "HERE IS A QUICK REVI
EW DF THE varIOUS MOUES, A
ND THE RESULTING REVERSALS..
..."
1135 PRINT
1140 PRINT " M * - * M
1141 * PRINT "- * -
1142 PRINT " - * -"
114B PRINT
1150 PRINT "THE 'M' DENOTES THE
MOUE POSITION, AND THE '*'S
DENOTE THE PIECES THAT WILL
bE FLIPPED. THE PIECE AT ,
M' WILL ALSO BE FLIPPED. TH
E BOARD IS DESIGNATED LIKE
THIS : "

```

```

3075 KEY = KEY - 17E:I = INT ((K
EY - 1) / 3) + 1:J = KEY - (
I - 1) * 3: IF BO(I;J) = -
1 THEN HOME : PRINT "MOVE D
NLY TD AN OCCUPIED SQUARE": FOR
I = 1 TO 1500: NEXT : GOTO 3
030
3080 ON KEY GOTO 3110,3120,3130,
3140,3150,3160,3170,3180.319
0
3110 I = 1:J = 1: GOSUB 3500
3111 I = 1:J = 2: GOSUB 3500
3112 I = 2:J = 1: GOSUB 3500
3113 I = 2:J = 2: GOSUB 3500: GOTO
3020
3120 I = 1:J = 1: GOSUB 3500
3121 I = 1:J = 2: GOSUB 3500
3122 I = 1:J = 3: GOSUB 3500: GOTO
3020
3130 I = 1:J = 2: GOSUB 3500
3131 I = 1:J = 3: GOSUB 3500
3132 I = 2:J = 2: GOSUB 3500
3133 I = 2:J = 3: GOSUB 3500: GOTD
3020
3140 I = 1:J= 1: GOSUB 3500
3141 I = 2:J= 1: GOSUB 3500
3142 I = 3:J= 1: GOSUB 3500: GOTO
3020
3150 I = 1:J = 2: GOSUB 3500
3151 I = 2:J = 1: GOSUB 3500
3152 I = 2:J = 2: GOSUB 3500
3153 I = 2:J = 3: GOSUB 3500
3154 I = 3:J = 2: GOSUB 3500: GOTO
3020
3160 I = 1:J = 3: GOSUB 3500
31G1 I = 2:J= 3: GOSUB 3500
31G2 I = 3:J = 3: GOSUB 3500: GOTD
3020
3170 I = 2:J = 1: GOSUB 3500
3171 I = 2:J = 2: GOSUB 3500
3172 I = 3:J= 1: GOSUB 3500
3173 I = 3:J = 2: GOSUB 3500: GOTO
3020

```
```

3180 I = 3:J = 1: GOSUB 3500
3181 I = 3:J = 2: GOSUB 3500
3182 I = 3:J = 3: GOSUB 3500: GOTO
3020
3190 I = 2:J = 2: GOSUB 3500
3191 I = 2:J = 3: GOSUB 3500
3192 I = 3:J = 2: GOSUB 3500
3193 I = 3:J = 3: GOSUB 3500: GOTO
3020
3500 BO(I;J) = - BO(I;J)
3505 COLOR= BO(I,J) + 5
3510 FOR I2 = I * 8 TO I * 8 + 7
: HLIN J * 8,」 * 8 + 7 AT I2
: NEXT I2
3520 IF BO(I;J) = - 1 THEN COLOR=
15: FOR I2 = I * 8 + 3 TO I *
8 + 4: HLIN J * 8 + 3.J * 8 +
4 AT I2: NEXT : RETURN
3525 COLOR= 15: FOR I2 = I * 8 +
1 TO I * 8 + 6: PLOT ((J * 8
) + (I2 - (I * 8))),I2: PLOT
((J * 8) + 7 + ((I * 8) - I2
)),I2: NEXT
3540 RETURN
4000:
4001 REM *** END
4002:
4010 HOME : PRINT CHR\$ (7) CHR名
(7) CHR* (7)"THE GAME IS OVE
R !!!"
402\emptyset IF WL = \ THEN PRINT "AND
YOU'VE LOST...SORRY "
4030 IF WL = 1 THEN PRINT "AND
YOU'VE WON.....GREAT!!!"
4990 RETURN

```


What a challenge! This game tests your quickness and dexterity. The game is similar to some of the arcade games you see. With a little practice YOU could write this program. Let's get to the heart of the program. First, you must LOAD BRICK WALL. You should RUN the program to get the feel of it. Now type: LIST -1960. Look at line 2010. To get into the GRaphics mode (for color) there must be the command GR (for graphics). To dramatize the function of a particular line, type in the line number and return; this deletes the line. Then run. What goes wrong? Does the progam crash or just loose some functions? To see the actual workings of the program, type LIST. What you see is a roadmap telling you where to find various routines. Again, if you would like to know the function of a line, type in the line number, return, and run. Some of the lines that you should experiment with are: 2110, 2310, 2331 and 3020.

10 REM \(* * * * * * * * * * * * * * * * * * *\)
11 REM *** \(* * *\)
12 REM *** BRICK WALL ***
13 REM *** \(* * *\)
14 REM \(* * * * * * * * * * * * * * * * * * *\)
15 REM
16 REM
20 GOSUB 1000: REM INSTS
30 GOSUB 2000: REM SETUP
40 GOSUB 3000: REM PLAY!
50 GOSUB 4000: REM !END!
GO END
1000:
1001 REM *** INSTS
\(1002:\)
1010 TEXT : NORMAL : HOME
1020 UTAB 3: HTAB 12: PRINT "*** BRICK WALL ***"
1030 UTAB 7: PRINT "IN THIS GAME , YOU WILL BE PRESENTED
WITH A WALL OF BRICKS AT THE TOP OF THE SCREEN, AND A PA dDLE AT THE bottom. the GAME PADDLE (PADDLE ©) IS US ED TO HIT A ROCK INTO THE WALL OF BRICKS.": PRINT
1031 PRINT "WHEN THE ROCK HITS A BRICK, IT WILL DESTROY IT AND POINTS WILL be ADDED
TO YOUR SCORE."
1040 PRINT : PRINT "YOUR MISSION - ShOULD yOU ACCEPT, IS to DESTROY AS MUCH OF THE BRICK WALL AS POSSIBLE.": PRINT
: PRINT "YOU ARE ALLOWED ONL
Y 5 MISSES."
10G0 UTAB 23: INPUT "HIT RETURN WHEN READY TO CONTINUE : ":A NS \({ }^{\circ}\)
1990 RETURN
2000:
2001 REM *** SETUP
\(2002:\)
2010 GR


2020 G0SUB 2100
2025 GOSUB 2400
2030 DIM DIR（G）：FOR I＝ 1 TO 6： READ DIR（I）：NEXT ：DATA－ \(1.5,-1,-5, .5,1,1,5\)
2090 RETURN
2100 REM＊＊＊DO BACKGROUND
2110 FOR I＝ 5 TO 19 STEP 2：K＝
（I－1）／2：K＝K－（ INT（K （2）＊2）
2115 COLOR \(=K * 4+9:\) FOR J \(=0\) TO 36 STEP 4：HLIN J：J＋ 1 AT
I：NEXT J
2120 COLOR \(=(1-K) * 4+9: F O R\)」＝ 2 TO 38 STEP 4：HLIN J\＆」 ＋ 1 AT I：NEXT J
2125 NEXT I
2190 RETURN
2200 REM＊＊＊DRAW PADDLE
\(2201 \mathrm{P}=(\mathrm{PDL}(\theta)-20) / \mathrm{E}\)
2202 IF \(P<\emptyset\) THEN \(P=\emptyset\)
2203 IF \(P>34\) THEN \(P=34\)
2210 IF \(P=P P\) THEN RETURN
2215 COLOR＝日：HLIN PP，PP＋ 5 AT
39：COLOR＝6：HLIN P，P＋ 5 AT
39：PP＝P：RETURN
2300 REM＊＊＊MOUE BALL
\(2305 X 2=B X+D I(B A): Y 2=B Y+B\) D
2310 IF X 2 ＜ 0 OR \(\mathrm{X} 2>39\) THEN X \(2=B X-D I(B A): B A=7-B A:\) POKE ©，220：POKE 1，10：CALL 768
2315 IF \(Y 2<\square\) THEN \(Y 2=B Y-B D\) \(: B D=-B D: B F=1:\) POKE \(\emptyset, 2\) 00：POKE 1，10：CALL 768
2320 IF Y2＞ 39 THEN COLOR＝ \(0: ~ P L O T\) \(B X, B Y: P O P\) ：GOTO \(306 \emptyset\)
2325 IF SCRN \((X 2, Y 2)<>E\) THEN 2330
2326 POKE 0．240：POKE 1，10：CALL 768：BD＝－BD：BF＝\(\triangle: B A=I N T\)
 \((X 2)-I N T(P P)+1: P B=P B\) \(+1:\) IF \(\mathrm{PB}=7\) THEN BD \(=-\) 2

2327 COLOR= Ø: PLOT BX,BY: COLOR= 15: PLOT X2,Y2: COLOR= 6: PLOT \(X 2: Y 2: B X=X 2: B Y=Y 2:\) RETURN

2330 IF SCRN \((X 2, Y 2)=0\) THEN 2 335
2331 COLOR \(=\varnothing: \times 3=(\operatorname{INT}(\times 2) 2\) ) * 2): HLIN X3:X3 + 1 AT YZ \(: S C=5 C+(10-(Y 2-1) /\) 2): POKE 0.10: POKE 1.10: CALL 768
2332 IF SC = INT (SC / 720) * 7 20 THEN POP: RETURN
2333 IF \(B D<\square O R B F=1\) THEN \(B D\) \(=-B D\)
2334 UTAB 22: HTAB 9: PRINT SC
2335 IF SCRN ( \(\mathrm{BX}, \mathrm{BY}\) ) < > 15 THEN 2345
2340 COLOR= 日: PLOT BX,BY
2345 COLQR \(=15:\) PLOT X2,Y2:BX \(=\) XZ:BY = YZ: RETURN
2400 REM *** MUSIC TONES
2405 POKE 768,173: POKE 769,48: POKE 770.192: POKE 771,136: POKE 772,208: POKE 773,4: POKE 77 4.198: POKE 775:1: POKE 776, 240
2410 POKE 777,8: POKE 778,202: POKE 779,208: POKE 780,246: POKE
781,166: POKE 782,0: POKE 78
3.76: POKE 784,0: POKE 785,3 : POKE 786,96: RETURN
\(3000:\)
3001 REM *** PLAY
\(3002:\)
3005 HOME : UTAB 22: PRINT "SCOR E : "
3006 UTAB 21: PRINT "BALLS LEFT : "
3010 FOR I = 1 TO 5: UTAB 21: HTAB 14: PRINT 5-I
3015 FOR J = 1 TO 100: GOSUB 220 ©: NEXT J
\begin{tabular}{|c|c|c|c|}
\hline 3020 & \multicolumn{3}{|l|}{\[
\begin{aligned}
& 10: B Y=21: B D=1: B F=0: B A= \\
& I N T(R N D(1) * 4)+2: P B=
\end{aligned}
\]} \\
\hline 3030 & GOSUB 2300: REM & \multicolumn{2}{|l|}{ALL} \\
\hline 3040 & GOSUB 2200: REM & \multicolumn{2}{|l|}{PADDLE} \\
\hline 3050 & GOTO 3030 & & \\
\hline 3060 & POKE 0.250: POKE & \multirow[t]{2}{*}{\(1100:\)} & \multirow[t]{2}{*}{CALL} \\
\hline & 768: NEXT: RETURN & & \\
\hline 4000 & \multicolumn{3}{|l|}{:} \\
\hline 4001 & \multicolumn{3}{|l|}{REM *** END} \\
\hline 4002 & \multicolumn{3}{|l|}{:} \\
\hline 4010 & HOME : PRINT "THE & GAME & 150 \\
\hline & \multicolumn{3}{|l|}{UER ! ! !} \\
\hline 4020 & PRINT "YOUR SCORE (" & I5: & "SC" \\
\hline 4030 & IF 5 C < 100 THEN & PRINT & "LD \\
\hline & \multicolumn{3}{|l|}{USY)": RETURN} \\
\hline 4031 & IF \(5 C \leqslant 200\) THEN & PRINT & "P0 \\
\hline & \multicolumn{3}{|l|}{OR)": RETURN} \\
\hline 4032 & IF SC < 300 THEN & PRINT & " 50 \\
\hline & \multicolumn{3}{|l|}{-50)": RETURN} \\
\hline 4033 & IF SC < 400 THEN & PRINT & "BL \\
\hline & \multicolumn{3}{|l|}{AH)": RETURN} \\
\hline 4034 & IF SC < 500 THEN & PRINT & "G0 \\
\hline & \multicolumn{3}{|l|}{OD)": RETURN} \\
\hline 4035 & IF SC < GDD THEN & PRINT & "GR \\
\hline & \multicolumn{3}{|l|}{EAT)": RETURN} \\
\hline 4036 & IF SC < 700 THEN & PRINT & "EX \\
\hline & \multicolumn{3}{|l|}{CELLENT)": RETURN} \\
\hline 4037 & IF 5C < 720 THEN & PRINT & "FA \\
\hline & \multicolumn{3}{|l|}{NTASTIC ": RETURN} \\
\hline 4038 & PRINT "PERFECT!!! & ! ": RE & TURN \\
\hline
\end{tabular}
\(040\)


Craps is a simplified version of the popular dice game. You are given a \(\$ 1500\) stake to play with until the money is gone. To stop playing, bet 0 dollars. Let's look into the program. Type: LIST 2190. To better understand the function of any one line, delete the line by typing in the line number, return, and run.
List line 2200. D1 and D2 are the variables for the dice. Once you understand line 2200, you will be able to "fix" the dice. As is, the outcome is random. But by changing this line, you can control their total. Line 2011 changes the color to white \((\) COLOR \(=15)\), and lines 2022 and 2023 draw the perimeter. Change 2011 so that it reads: 2011 COLOR = 1. Now when you run the program, the perimeter will be magenta (COLOR \(=1\) ). When the dice are rolled, a graphic representation (drawing) of the random number (between one and six) is displayed on the screen. There are two cubes (dies) which, when added together, comprise the total. Line 2330 tells the computer to branch to one of the six given lines, depending on the RaNDom value of DD. The six lines (2331-2336) draw a configuration of a die, equal to \(1,2,3,4,5\), or 6 .

\begin{tabular}{|c|c|}
\hline 1078 & INPUT "PRESS RETURN WHEN \\
\hline & ADY TO CONTINUE";ANS\$ \\
\hline 1080 & HOME : UTAB 3: HTAB 13: PRINT "*** CRAPS ***": UTAB 7 \\
\hline 1100 & UTAB 12 \\
\hline 1110 & PRINT "TO QUIT THE GAME, BE \\
\hline & T D Dollars." \\
\hline 1990 & UTAB 23: INPUT "PRESS RETUR \\
\hline & \(N\) WHEN READY TO CONTINUE : \\
\hline & ANS \({ }^{\text {a }}\) \\
\hline 1995 & RETURN \\
\hline 2000 & : \\
\hline 2001 & REM *** SETUP \\
\hline 2002 & : \\
\hline 2010 & GR \\
\hline 2011 & COLOR \(=15\) \\
\hline 2020 & MNY \(=1500\) \\
\hline 2022 & HLIN 0.39 AT \(00: \mathrm{HLIN} 0.39 \mathrm{AT}\) \\
\hline & 39 \\
\hline 2023 & ULIN 0.39 AT 00: ULIN D.39 AT \\
\hline & 39 \\
\hline 2190 & RETURN \\
\hline 2200 & D1 = INT ( RND (1) * E) + \\
\hline & \[
: D 2=\operatorname{INT}(\operatorname{RND}(1) * 6)+
\] \\
\hline 2210 & GOSUB 2300: GOSUB 2310 \\
\hline 2220 & IF PEEK ( - 16384) < 128 THEN \\
\hline & 2200 \\
\hline 2230 & POKE - 16368,0: RETURN \\
\hline 2300 & \(D D=D 1: D X=10:\) GOTO 2320 \\
\hline 2310 & \(D D=D 2: D X=24: \operatorname{GOTO} 2320\) \\
\hline 2320 & COLOR \(=\) INT ( RND (1) * 14) \\
\hline & + 1 \\
\hline 2325 & FOR I \(=20\) TO 26: HLIN DX,D \\
\hline & \(X+\mathrm{G}\) AT I: NEXT \\
\hline 2330 & COLOR = 15: ON DD GOTO 2331, \\
\hline & \(2332,2333,2334,2335,2336\) \\
\hline 2331 & PLOT DX + 3,23: GOTO 2340 \\
\hline 2332 & PLOT DX + 1,21: PLOT DX + 5 \\
\hline & ,25: GOTO 2340 \\
\hline 2333 & PLOT DX + 1,21: PLOT DX + 3 \\
\hline & ,23: PLOT DX + 5,25: GOTO 23 \\
\hline & 40 \\
\hline
\end{tabular}
```

2334 PLOT DX + 1,21: PLOT DX + 5
,21: PLOT DX + 1,25: PLOT DX
+ 5.25: GOTO 2340
2335 PLOT DX + 1.21: PLOT DX + 5
,21: PLOT DX + 1,25: PLOT DX
+ 5.25: PLOT DX + 3.23: GOTO
2340
2336 PLOT DX + 1,21: PLOT DX + 5
,21: PLOT DX + 1,25: PLOT DX
+ 5.25: PLOT DX + 1:23: PLOT
DX + 5.23: GOTD 2340
2340 FOR I = 1 TO 5:XX = PEEK (
- 1G336): NEXT : RETURN
3000:
3001 REM *** PLAY
3002:
3010 HOME : PRINT "YOU HAVE "MNY
" DOLLARS"
3020 INPUT "HOW MUCH WILL YOU RI
SK ON THIS BET? ";ANS悉
3021 ANS = UAL (ANS\$)
3022 IF ANS < OR ANS > MNY OR
ANS < > INT (ANS) THEN 301
O
3023 IF ANS = Ø THEN RETURN
3025 HOME : PRINT "BET: "ANS"
(ROLLING ...)"
3030 PRINT "<PRESS ANY KEY TO ST
 OP THE ROLL>"
3040 GOSUB 2200
3050 HOME : PRINT "ROLLED: "D1 +
D2
3055 IF D1 + D2 = 2 DR D1 + D2 =
3 OR D1 + D2 = 12 THEN PRINT
"YOU CRAPPED OUT ...": FOR P
A = 1 TO 1500: NEXT PA: GOTO
3100
30G0 IF D1 + D2 = 7 OR D1 + D2 =
11 THEN PRINT "YOU WON THAT
TOSS ...": FOR PA = 1 TO 15
00: NEXT PA: GOTO 3200
30G1 PRINT "YOUR POINT IS "D1 +
D2:PT = D1 + D2: FDR PA = 1 TO
1200: NEXT PA

```

3065 HOME : PRINT "BET: "ANS" PT : "PT" (ROLLING AGAIN...)"
\(30 G G\) PRINT "くPRESS ANY KEY TO ST OP THE ROLL>": GOSUB 2200
3070 HOME : PRINT "ROLLED: "D1 + D2
3080 IF D1 \(+D 2=7\) THEN PRINT "YOU CRAPPED OUT ...": FOR P \(A=1\) TO 1500: NEXT PA: GOTO 3100
3085 IF D1 + D2 \(=\) PT THEN PRINT "YOU GOT YOUR POINT !!!": FOR \(P A=1\) TO 1500: NEXT PA: GOTO 3200
3090 PRINT "YOU MUST ROLL AGAIN. . ": \(\mathrm{FOR} \mathrm{PA}=1 \mathrm{TO}\) 1200: NEXT
PA: GOTO 3065
3100 MNY \(=\) MNY - ANS: IF MNY \(=0\) THEN RETURN
3110 GOTO 3010
3200 MNY \(=\) MNY + ANS: GOTO 3010
\(4000:\)
4001 REM *** END
\(4002:\)
\(4010 \mathrm{FOR} \mathrm{I}=0 \mathrm{TO} 39: \mathrm{COLOR}=\mathrm{INT}\)
( RND (1) * 15) + 1: HLIN © 。
39 AT I: HLIN 0.39 AT 39 - I : ULIN D.39 AT I: ULIN O.39 AT
\(39-I: X X=\) PEEK ( \(\quad\) - 1633G)
- PEEK ( - 1633G) - PEEK
( - 16336): NEXT
4020 FOR PA \(=1\) TO 1500: NEXT PA
4030 HOME : PRINT "YOU STOPPED W ITH "MNY" DOLLARS"
4040 IF MNY < 100 THEN PRINT "B ETTER STICK TO THE SLOT MACH INES!": RETURN
4041 IF MNYY < 500 THEN PRINT "N OT SO GOOD": RETURN
4042 IF MNY < 1500 THEN PRINT " NOT BAD AT ALL....": RETURN
4043 PRINT "THAT'S GREAT! ":
4044 IF MNY > \(E 000\) THEN PRINT " WOW, WHATTA ROLL!!!"
4045 RETURN

C



In this game the maze is constructed before your eyes but becomes invisible when completed. You must avoid the man-eating dragon and escape the maze. Otherwise you will attend the dragon's dinner-as his main course! Only a good memory will save you from this terrible fate. To experiment with the graphics, type: LIST 2025. Again, change any line whose function is unclear. Specifically, begin by looking at line 2020. Change COLOR \(=15\) to COLOR \(=4\). Lines 3030-3033 check to see which direction you want to move. Each of the four lines which the computer might branch to, either increments or decrements the X or Y coordinate. For instance, line 3100 handles the job when the user has entered K (to move right). When you try to move right, the Y coordinate is unchanged. The \(X\) coordinate is increased \((X 2=P X+1)\). At the origin the \(X Y\) coordinates are 0,0 . As you move to the right, the \(Y\) coordinate stays at 0 , but the X coordinate continually increases. Beginning at the origin, 0,0 , the coordinates would look like this:

0,1 0,2 0,3 0,4......0,38 0,39.

```

1090 PRINT : PRINT " REAL-TIME
": PRINT "WHERE THE DRAGON'S
PURSUIT IS CONSTANT, WHETHE
R YOU MOUE OR NOT ! "
1100 PRINT : PRINT " WILL YOU
PLAY:": PRINT: PRINT "
N)ORMAL -OR- R)EAL
-TIME"
1110 UTAB 23: CALL - 958: INPUT
"WHAT IS YOUR CHOICE (N/R)":

```

```

 IF ANS$ < > "N" AND ANS& <
 > "R" THEN 1110
 1990 RETURN
2000:
2001 REM *** SETUP
2002:
2010 DIM MA(13,13,4)
2015 DEF FN R(X) = INT (RND (
1) * X) + 1
2020 RX = FNR(13):RY = FNR(13
): GR: COLOR= 15: FOR I = \emptyset
T0 18 STEP 3: HLIN 0,39 AT
I: HLIN 0.39 AT 39 - I: ULIN
0.39 AT I: ULIN 0.39 AT 39 -
I: NEXT
2021 HOME : UTAB 22: PRINT " <
<< I'M NOW BUILDING THE LAIR
>>>"
2025 COLOR= 0:CNT = 1: GOTO 2070
2035 IF FN R(10) = 1 THEN 2100
2070 ON FN R(4) GOTO 2075,2080.
2085,2090
2075 IF RX = 13 THEN 2035
207G IF MA(RX,RY,1) THEN 2035
2077 IF MA(RX + 1,RY,0) THEN 203
5
2078 ULIN 3 * RY - 2,3 * RY - 1 AT
3 * RX:MA(RX,RY,0) = MA(RX,R
Y:D) + 1:MA(RX,RY,1) = 1:RX =
RX + 1:MA(RX,RY,3) = 1:MA(RX
,RY,\emptyset) = MA(RX,RY,0) + 1

```
```

2079 GOTO 2095
2080 IF RY = 13 THEN 2035
2081 IF MA(RX,RY,2) THEN 2035
2082 IF MA(RX,RY + 1,0) THEN 203
5
2083 HLIN 3 * RX - 2,3 * RX - 1 AT
3 * RY:MA(RX,RY,0) = MA(RX,R
Y,(B) + 1:MA(RX,RY,2) = 1:RY =
RY + 1:MA(RX,RY,4) = 1:MA(RX
RY,0) = MA(RX,RY,(D) + 1
2084 GOTO 20.5
2085 IF RX = 1 THEN 2035
208G IF MA(RX,RY,3) THEN 2035
2087 IF MA(RX - 1,RY,0) THEN 203
5
2088 ULIN 3 * RY - 2,3 * RY - 1 AT
3 * (RX - 1):MA(RX,RY,0) = M
A(RX,RY,Q) + 1:MA(RX,RY,3) =
1:RX = RX - 1:MA(RX,RY,1) =
1:MA(RX,RY,\emptyset) = MA(RX,RY,\emptyset) +
1
2089 GOTO 2095
2000 IF RY = 1 THEN 2035
2091 IF MA(RX,RY,4) THEN 2035
2092 IF MA(RX,RY - 1,0) THEN 203
5
2093 HLIN 3 * RX - 2,3 * RX - 1 AT
3 * (RY - 1):MA(RX,RY,0) = M
A(RX,RY,0) + 1:MA(RX,RY,4) =
1:RY = RY - 1:MA(RX,RY,2) =
1:MA(RX,RY,\emptyset) = MA(RX,RY,\emptyset) +
1
2094 GOTO 2095
2005 IF MA(RX,RY,0) = 1 THEN CNT
= CNT + 1: IF CNT = 1E9 THEN
2200
2097 GOTO 2035
2100 RX = FN R(13):RY = FN R(13
): IF MA(RX,RY,D) = O OR MA(
RX,RY,(D) = 4 THEN 2100
2105 GOTO 2035
2200 GR : COLOR= 15: ULIN 0.39 AT
39: HLIN D:39 AT 39: ULIN D,
39 AT Ø: HLIN Ø.39 AT Ø

```
```

2210 PX = 1:PY = FN R(13): COLOR=
8:XX = PX:YY = PY: GOSUB 250
0
2215WY = FN R(13): COLOR= 0: ULIN
WY * 3-2,WY * 3-1 AT 39
2220 MX = 13:MY = WY: COLOR= 1:XX
= MX:YY = MY: GOSUB 2500
2300 POKE 768,173: POKE 769,48: POKE
770,192: POKE 771,136: POKE
772,208: POKE 773:4: POKE 77
4,198: POKE 775,1: POKE 776,
240
2310 POKE 777:8: POKE 778,202: POKE
779,208: POKE 780,24G: POKE
781,16G: POKE 782,0: POKE 78
3.76: POKE 784,0: POKE 785,3
: POKE 78G,96
2320 FOR I = 1 TO 13: FOR J = 1 TO
13:MA(I,J,0) = @: NEXT J.I
2400 HOME : PRINT "K) FOR RIGHT
I) FOR UP": PRINT "M) F
OR DOWN J) FOR LEFT"
2490 RETURN
2500 REM *** DRAW A SQUARE
2505 FOR I = XX * 3 - 2 TO XX *
3-1: FDR J = YY * 3 - 2 TO
YY * 3 - 1: PLDT I:J: NEXT J
I: RETURN
3000:
3001 REM *** PLAY
3002:
3010 IF PEEK (- 16384) < 128 AND
ANS\$ = "R" THEN 3700
3015 IF PEEK (- 16384) < 128 THEN
3015
3020 KEY = PEEK (- 16384): POKE
- 16368,0
3025 KEY\$ = CHR\$ (KEY - 128)
3030 IF KEY\$ = "K" THEN 3100
3031 IF KEY\$ = "M" THEN 3200
3032 IF KEY\$ = "J" THEN 3300
3033 IF KEY\$ = "I" THEN 3400
3040 POKE 0,200: POKE 1,100: CALL
7E8: GOTO 3700

```
```

3100 IF MA(PX,PY,1) THEN X2 = PX
+ 1:Y2 = PY: GOTO 3500
3110 POKE 0,20: POKE 1,20: CALL
7E8: COLDR= 4: ULIN PY * 3-
3.PY * 3 AT PX * 3: GOTO 370
0
3200 IF MA(PX,PY,2) THEN X2 = PX
:Y2 = PY + 1: GOTO 350D
3210 POKE 0,20: POKE 1,20: CALL
768: COLQR= 4: HLIN PX * 3-
3.PX * 3 AT PY * 3: GロTO 370
O
3300 IF MA(PX,PY,3) THEN X2 = PX
- 1:Y2 = PY: GOTD 3500
3310 POKE 0,20: POKE 1,20: CALL
7E8: COLOR= 4: ULIN PY * 3-
3.PY * 3 AT (PX - 1) * 3: GOTO
3700
3400 IF MA(PX,PY,4) THEN X2 = PX
:Y2 = PY - 1: GOTO 3500
3410 POKE 0,20: POKE 1,20: CALL
768: COLDR= 4: HLIN PX * 3 -
- 3.PX * 3 AT (PY - 1) * 3: GOTO
3700
3500 COLOR= D:XX = PX:YY = PY: GOSUB
2500: COLOR= 8:XX = X2:YY =
Y2: GOSUB 2500:PX = X2:PY =
Y2: GOTO 3700
3700 IF PX = 13 AND PY = WY THEN
WIN = 1: RETURN
3705 IF PX = MX AND PY = MY THEN
XX = MX:YY = MY: COLDR = 1: GOSUB
2500:WIN = 0: RETURN
3709 ON FN R(4) GOTO 3710,3711,
3712,3713
3710 IF MX < PX THEN 3720
3711 IF MY < PY THEN 3730
3712 IF MX > PX THEN 3740
3713 IF MY > PY THEN 3750
3714 GOTO 3710
3720 IF MX = 13 THEN 3730
3722 IF MA(MX,MY,0) > 5 THEN 372
G

```

3724 IF NOT MA(MX,MY,1) THEN 37 30
\(3725 \times 2=M X+1: Y 2=M Y: X X=M X:\)
YY = MY: COLDR= ©: GOSUB 250
\(0: X X=X 2: Y Y=Y 2:\) COLDR= 1: GOSUB 2500:MX \(=\mathrm{XZ}: \mathrm{MY}=\mathrm{Y} 2:\) \(M A(M X, M Y, \varnothing)=M A(M X, M Y, D)+\) 1: GOTO 3800
3730 IF MY \(=13\) THEN 3740
3732 IF MA(MX,MY, 0\()>5\) THEN 373 6

3734 IF NOT MA(MX,MY,2) THEN 37 40
\(3736 X 2=M X: Y 2=M Y+1: X X=M X:\) \(Y Y=M Y: C O L O R=0:\) GOSUB 250
\(\triangle: X X=X Z: Y Y=Y 2:\) COLDR= 1: GOSUB 2500:MX \(=\mathrm{XZ}: \mathrm{MY}=\mathrm{Y} 2:\)
\(M A(M X, M Y, \varnothing)=M A(M X, M Y, \varnothing)+\) 1: GOTO 3800
3740 IF MX \(=1\) THEN 3750
3742 IF MA(MX,MY, ©) > 5 THEN 374 6

3744 IF NOT MA(MX,MY,3) THEN 37 50
\(3746 \times 2=M X-1: Y 2=M Y: X X=M X:\) \(Y Y=\) MY: COLOR= 0: GOSUB 250 D:XX = XZ:YY = YZ: COLDR= 1: GOSUB 2500:MX \(=\mathrm{XZ}: \mathrm{MY}=\mathrm{Y} 2:\) \(M A(M X, M Y, D)=M A(M X, M Y, D)+\) 1: GOTO 3800
3750 IF MY \(=1\) THEN 3720
3752 IF MA(MX,MY, (D) > 5 THEN 375 E

3754 IF NOT MA(MX,MY,4) THEN 37 20
\(3756 \mathrm{XZ}=\mathrm{MX:YZ}=\mathrm{MY}-1: X X=M X:\) \(Y Y=M Y: C O L O R=0:\) GOSUB 250 D:XX = XZ:YY = YZ: COLDR= 1: GOSUB 2500:MX \(=\mathrm{K2}:\) MY \(=\mathrm{YZ}:\) \(M A(M X, M Y, D)=M A(M X, M Y, D)+\) 1: GOTO 3800
3800 IF \(P X=13\) AND PY = WY THEN WIN = 1: RETURN
```

3805 IF PX = MX AND PY = MY THEN
WIN = Ø: RETURN
3810 GOTO 3010
3990 RETURN
4000 :
4001 REM *** END
4002:
4010 IF (WIN) THEN 4100
4020 HOME : FOR I = 10 TO 50: POKE
0,I: POKE 1,20: CALL 768: NEXT
: FOR I = 1 TO 3: POKE 0,200
: POKE 1,150: CALL 7E8: NEXT
: POKE 0.240: POKE 1,250: CALL
768
4035 UTAB 22: PRINT "SORRY, BUT
THE DRAGON GOT YOU...."
4 0 . 5 ~ R E T U R N
4100 HOME : FOR I = 50 TO 20 STEP
- 1: POKE D,I: POKE 1,20: CALL
768: POKE 0,I - 1: POKE 1,20
: CALL 768: NEXT
4110 UTAB 22: PRINT "***** YOU W
ON ***** (BUT NOW THE DRAGO
NIS EUEN HUNGRIER!)"
4990 RETURN

```


In this popular word game, you try to surmise the 'secret word' by guessing individual letters contained therein. Failure to divine the complete word will result in the completed figure being hanged. Because the graphics are quite clear in this program, a few lines will be highlighted. Type: LIST-2140. Line 2100 draws a white border around the gallows. Line 2110 draws the gallows. Line 2120 completes what line 2110 started. Lines 2130-2135 draw the stairs leading up to the hanging platform. Each time you make an incorrect guess, line 3070 instructs the program to perform a subroutine. These subroutines each draw a separate part of the prisoner's body. Each line (2200-2900) draws a piece of the man. Line 2200 draws the head, line 2300 draws the eyes, line 2400 draws the mouth, and so on. You are encouraged to experiment with these lines and to change or omit any line whose function is unclear.

```

1990 RETURN
2000:
2001 REM *** SETUP
2002:
2010 RESTORE
2020 FOR I = 1 TO INT (RND (1)

* 30) + 1: READ WRD\&: NEXT

```

2030 DATA "PENCIL","COMPUTER","P RINTER", "ELEPHANT","NOTEBOOK "

2031 DATA "HANGMAN", "POSTER", "CE ILING", "FOOTBALL", "EVERGREEN "

2032 DATA "YESTERDAY","MIRROR"," PICTURE", "CARPET","MONOPOLY"

2033 DATA "SCOUNDREL", "PROFILE", "EQUIPMENT", "FOUNTAIN", "LAVI SH"
2034 DATA "COOKIES", "PLEASURE"," ROUTINE", "TEACHER", "REGULAR"

2035 DATA "BARBECUE","BARRIER"," PAUEMENT", "THOUGHTFUL", "MARR IAGE"
2050 DIM GU\$(15):WL \(=\) LEN (WRD ): FOR I = 1 TD WL:GU中 (I) = CHR \({ }^{\text {S }}\) (95): NEXT
2055 GUESSED \(\$=" "\)
2100 GR: COLOR= 15: HLIN 0.39 AT \(0:\) HLIN 0.39 AT 39: ULIN 0.3 9 AT 39: ULIN 0.39 AT ©
2110 HLIN 5.34 AT 28: ULIN 7.35 AT 5: ULIN 29.35 AT 34: HLIN E, 21 AT 7
2120 PLOT G:11: PLOT 7,10: PLOT 8,9: PLOT 9,8: PLOT 20.8: PLOT 20.9

2130 COLOR= 8: HLIN 19.21 AT 29: HLIN 17,23 AT 31: HLIN 15,2 5 AT 33: HLIN 13.27 AT 35
2135 COLDR= 9: HLIN 18,22 AT 30: HLIN 16,24 AT 32: HLIN 14,2
 G AT 34
2190 RETURN
2200 COLOR= 2: HLIN 19.21 AT 10:
        HLIN 19.21 AT 16: ULIN 12.1
        4 AT 17: ULIN 12:14 AT 23: PLOT
        18:11: PLOT 22:11: PLOT 18:1
    5: PLOT 22.15: RETURN
2300 COLOR = 7: PLOT 18:12: PLOT
    19.12: PLOT 21:12: PLOT 22:1
    2: PLOT 19.13: PLOT 21:13: RETURN
2400 COLOR= G: PLOT 19,15: PLOT
    20.14: PLOT 21.15: RETURN
2500 COLOR= 3: ULIN 17.22 AT 20:
        RETURN
2600 COLOR= 12: HLIN 17.19 AT 19
        : ULIN 19.21 AT 17: RETURN
2700 COLOR= 12: HLIN 21.23 AT 19
        : ULIN 19.21 AT 23: RETURN
2800 COLOR= 4: PLOT 19.23: PLOT
        18.24: HLIN 16.18 AT 25: RETURN
2900 COLOR= 4: PLOT 21.23: PLOT
        22,24: HLIN 22,24 AT 25: RETURN
\(3000:\)
3001 REM *** PLAY
\(3002:\)
3010 HOME : PRINT "WORD: ": FOR
        \(I=1\) TD WL: PRINT GU\& (I): NEXT
        : PRINT
\(3015 \mathrm{FOR} \mathrm{I}=1 \mathrm{TO} \mathrm{WL}: \mathrm{IF} \mathrm{GU}(\mathrm{I})\) )
        \(>\) CHR \({ }^{\circ}\) (95) THEN NEXT :WO
    L = 1: RETURN
3020 PRINT "GUESSES: ":GU㤩
3030 PRINT: PRINT "WHAT IS YOUR
        GUESS \(===>\) ": GET ANS \({ }^{\circ}\)
3040 IF ANS 3 "A" OR ANS\$ > "Z"
        THEN 3010
3045 FOR I \(=1 \mathrm{TO} \mathrm{WL}\)
3050 IF MID \(\$\) (GU\&,I,1) = ANS \(\$\) THEN
        UTAB 23: HTAB 1: CALL - 95
        8: PRINT "<<< THAT'S ALREADY
        BEEN GUESSED >>>": FDR PA =
        1 TO 1000: NEXT PA: GOTO 301
        0
```

3055 NEXT
30G0 RC = 0: FOR I = 1 TO WL: IF
MID\& (WR\&,I,1) = ANS\& THEN
GU$(I) = ANS$:RC = RC + 1
30G5 NEXT: IF RC > O THEN 3010
3070 GU\$ = GU\$ + ANS\&: ON LEN (G
U$) G0SUB 2200,2300,2400.250
 0,2600,2700,2800,2900
3075 XX = PEEK (- 1633G) + PEEK
 (- 1633G) + PEEK (- 1G33G
) + PEEK (- 1G33G)
3080 IF LEN (GU$) < 8 THEN 3010
3090 WOL = 0: RETURN
4000:
4001 REM *** END
4002:
4010 FOR I = O TO 39: COLOR= INT
(RND (1) * 15) + 1: ULIN 0.
39 AT I:XX = PEEK (- 1633G
) - PEEK (- 1G33G) - XX =
PEEK (- 1G33G) - XX = PEEK
(- 1G33G): NEXT
4020 FOR PA = 1 T0 1500: NEXT PA
4030 TEXT : HOME : UTAB 3
4040 PRINT "THE GAME IS OUER !!!
"
4050 IF WOL THEN PRINT: PRINT
: PRINT "YOU GUESSED THE COR
RECT WORD, AND THE": PRINT "
PRISONER WILL GO FREE !!!"
4055 IF NOT WOL THEN PRINT : PRINT
: PRINT "THE PRISONER HAS BE
EN HUNG, AS YOU": PRINT "FAI
LED TO GUESS: "WRD\&" !!!"
\triangleOED PRINT : PRINT INPUT "DO YO
U WISH TO PLAY AGAIN? ":ANS\$
: IF LEFT\& (ANS胡1) = "Y" THEN
4990 RETURN

```




In this game you build a maze for the maze-loving Itche worm. Upon instruction, the worm will attempt to solve the maze. Though not a game per se, it is an ingenious utilization of graphics. The two routines which control color begin at 2000 and 2700. Line 2210 sets the color of the maze perimeter and then branches to 2700 . Whether you are moving, plotting, or erasing, you must specify which direction you intend to travel. Lines 2715-2740 check to see which of the four directions you chose and will cause the program to branch to the accommodating line (2750-2780). Lines to experiment with include 2010, 2210, and 3010.

```

105G PRINT "
D=DOWN"
1058 PRINT
10G0 INPUT "PRESS RETURN WHEN RE
ADY TO CONTINUE : ":ANS串
10G5 RETURN
2000:
2001 REM *** SETUP
2002:
2010 GR : HOME:CL = 1: COLOR= 4
: HLIN 0.39 AT 0: HLIN 0.39 AT
39: ULIN 0.39 AT 0: ULIN 0.3
9 AT 39: COLOR= 0: PLOT 0.1:
PLOT 39.1
2012 IX = 2:IY = 1: COLOR= 7: PLOT
IX:IY:CLR = 1G:CLR2 = 0
2015 POKE 768,173: POKE 7E9,48: POKE
770,192: POKE 771,136: POKE
772,208: POKE 773:4: POKE 77
4.198: POKE 775,1: POKE 776,
240
2017 POKE 777,8: POKE 778,202: POKE
779,208: POKE 780,246: POKE
781,16G: POKE 782,0: POKE 78
3.7E: POKE 784,0: POKE 785,3
: POKE 78G:9G
2019 HOME : PRINT "G)D C)LEA
R X)IT U)P D)OWN P
)LQT E)RASE M)QUE ===
> L)EFT R)IGHT"
2020 GET ANS\$
2030 IF ANS\$ = "G" THEN 2100
2035 IF ANS\& = "P" THEN 2200
2040 IF ANS\$ = "M" THEN 2300
2045 IF ANS\& = "E" THEN 2400
2050 IF ANS婁 = "C" THEN 2500
2055 IF ANS串 = "X" THEN 2G00
2056 IF ANS\& = CHR串 (3) THEN 26
OO
20G0 POKE 0,10: POKE 1,5: CALL 7
G8: GOTO 2020
2100 REM *** GO ROUTINE
2110 RETURN

```
2200 REM *** PLOT ROUTINE
2210 CLR = 9: GOTO 2700
2300 REM *** MOUE ROUTINE
2310 CLR \(=16:\) GOTO 2700
2400 REM *** ERASE ROUTINE
2410 CLR = 0: GOTO 2700
2500 REM *** CLEAR ROUTINE
2510 GOTO 2010
2600 REM *** EXIT ROUTINE
2610 HOME : PRINT: INPUT "Do yo
u wish to quit : "\#ANSき: IF
        LEFT中 (ANS\&,1) = "Y" THEN POP
    : GOTO 50
2620 HOME : GOTO 2019
2700 REM *** DIRECTIONS
2710 GET ANS क: X2 \(=I X: Y 2=I Y\)
2715 IF ANS\$ = "R" THEN 2750
2720 IF ANS \(=\) "D" THEN 2760
2730 IF ANS\$ = "L" THEN 2770
2740 IF ANS\$ = "U" THEN 2780
2745 GOTO 2030
2750 REM *** RIGHT
\(2752 \times 2=I X+1:\) IF \(\mathrm{X} 2<39\) THEN
    2790
\(2754 \times 2=38:\) POKE 0,200: POKE 1,
    15: CALL 768: GOTO 2790
2750 REM *** DOWN
2762 Y2 = IY + 1: IF Y2 < 39 THEN
    2790
\(2764 \mathrm{Y} 2=38:\) POKE 0,200: POKE 1,
    15: CALL 768: GOTO 2790
2770 REM *** LEFT
2772 X2 = IX - 1: IF X2 > 0 THEN
    2790
\(2774 \times 2=1:\) POKE 0,200: POKE 1,1
    5: CALL 768: GOTO 2790
2780 REM *** UP
2782 Y2 = IY - 1: IF Y2 > © THEN
    2790
\(2784 \mathrm{Y} 2=1:\) POKE 0,200: POKE 1,1
    5: CALL 768: GOTO 2790
2790 COLOR \(=\) CLR: \(\operatorname{IF}\) CLR \(=16\) THEN
        COLOR \(=\mathrm{C} 2\)

2792 PLOT IX,IY:C2 = SCRN( \(\mathrm{X} 2, Y\) 2): COLOR= 7: PLOT \(\mathrm{X} 2, \mathrm{Y} 2: I \mathrm{X}=\) X2:IY = Y2: GOTO 2700
\(3000:\)
3001 REM *** PLAY
\(3002:\)
3005 HOME : PRINT: PRINT "《<< I
TCHE IS NOW SOLUING THE MAZE >>>"
\(3010 \times 2=1: Y 2=1: \quad\) COLOR \(=13:\) PLOT \(\mathrm{X} 2, \mathrm{Y} 2\)
3015 COLOR = CLR: IF CLR \(=16\) THEN COLDR = C2
3016 PLOT IX,IY
\(3020 \times 3=0: Y 3=1: D I R=2\)
3030 IF \(\times 2+X 3=0\) AND \(Y 2+Y 3=\)
1 THEN RETURN
3035 IF \(X 2+X 3=39\) AND \(Y 2+Y 3\) \(=1\) THEN RETURN
3040 IF \(\times 2+X 3>\) AND \(X 2+X 3<\) 39 AND \(Y 2+Y 3>0\) AND \(Y 2+\) \(Y 3<39\) AND SCRN \(\quad \times 2+X 3, Y\) \(2+Y 3)=0\) THEN 3100
\(3045 \mathrm{DI}=\mathrm{DI}-1: \mathrm{IF} \mathrm{DI}<1\) THEN \(D I=4\)
3050 IF DI \(=1\) THEN \(\times 3=1: Y 3=\) 0: GOTD 3030
3055 IF DI \(=2\) THEN \(\times 3=0: Y 3=\) 1: GOTD 3030
\(30 G 0\) IF DI \(=3\) THEN \(\times 3=-1: Y 3\) = 0: GOTD 3030
3065 IF DI \(=4\) THEN \(\times 3=0: Y 3=\) - 1: GOTO 3030

3100 COLOR \(=0:\) PLOT \(X 2, Y 2:\) COLOR= \(13: X 2=X 2+X 3: Y 2=Y 2+Y 3\) : PLOT \(\times 2, Y 2: C L=C L+1: D I=\) DI + 1: IF DI \(>4\) THEN DI = 1
3110 POKE 0.25: POKE 1.3: CALL 7 68: GOTO 3050
\(4000:\)
4001 REM *** END
\(4002:\)


4010 COLOR \(=0:\) PLOT \(X 2: Y 2: X 2=X\) \(2+X 3: Y 2=Y 2+Y 3: F D R I=\) 1 TO 10: COLOR= 13: PLOT X2, Y2: POKE 0.20: POKE 1,20: CALL 768: COLOR \(=0:\) PLOT \(\times 2, Y 2:\) POKE \(0,40:\) POKE 1,20: CALL 768: NEXT I

4020 HOME : PRINT
4025 IF LEFT\& (ANS \(\$, 1\) ) = "Y" THEN PRINT "<< ITCHE SAYS YOU SP OILED HIS FUN !!! >>": RETURN

4030 IF \(\times 2=39\) THEN PRINT " \(\lll\) ITCHE HAS SOLVED THE MAZE \(>\) >>": PRINT "HE DID IT IN "CL " CLICKS...": RETURN
4040 PRINT "く<< ITCHE CANNOT SOL UE YOUR MAZE >>>": PRINT "HE IS STUCK AT THE BEGINNING.. -": RETURN



This game is similar to the video dinosaur, Pong. You have five men, as does your opponent. Using the paddles, you try to deflect the ball into your opponent's men and also protect your own. The winner is the first player to eliminate all of the other player's men. The graphics are very straightforward and easy to understand. Start by typing: LIST -2043. The setup is handled almost entirely in lines 2030-2043. Line 2031 controls the color of the court's perimeter. If you want to verify this, change the color to any number through 15. Rewrite line 2032 so that it reads: 2032 HLIN 4,32 AT 12:HLIN 6,27 AT 34. Run the program to see what changes occur. Make similar changes to line 2033, then run the program. Line 2040 sets the color of the five men. Experiment with different colors. Rewrite line 2041 so that it reads: 2041 FOR I \(=1\) TO 33 STEP 8. Run the program. Change line 2042 so that it reads: 2042 VLIN I,I + 4 AT 8:VLIN I,I + 2 AT 31. Hopefully, these visual modifications will help you to understand the function of each line. Next, we will look at how the ball is controlled, and why it is white. Line 3075 sets the color to white, (color =15). If you want to change the color of the ball, then change line 3075. Lines \(3070,3071,3080,3085-6-7\), and others, control the movement of the ball. Line 3090 specifically entrols the ball when it hits either back wall. To confirm this, type: 3090. Hit RETURN, then rerun the program.
```

10 REM ********************
11 REM *** ***
12 REM *** KNOCK OUT ***
1 3 REM *** ****
1 4 \mathrm { REM } \mathrm { ******************** }
15 REM
1G REM
20 GOSUB 1000: REM INSTS
30 GOSUB 2000: REM SETUP
40 GOSUB 3000: REM PLAY!
50 GOSUB 4000: REM !END!
60 END
1000:
1001 REM *** INSTS
1002:
1010 TEXT : NORMAL : HOME
1020 UTAB 3: HTAB 11: PRINT "***
KNOCK OUT ***"
1030 UTAB 7: PRINT "*KNOCK OUT*
IS A TWO PLAYER GAME THAT IS
SIMILAR TO PONG. EACH PLAYE
R HAS A PADDLE WITH WHIC
H HE TRIES TO RETURN THEBALL
INTO HIS OPPONENT'S COURT."
1040 PRINT
1050 PRINT "THE OBJECT OF THE GA
ME IS TO KO (KNOCK OUT) YOU
R OPPONENT'S MEN WHILE DEFEN
DINGYOUR OWN."
1055 PRINT
10G0 PRINT "THE FIRST PLAYER TO
KNOCK OUT ALL OF THEOPPOSITI
ON'S MEN IS THE WINNER."
1070 UTAB 22: INPUT "HIT RETURN
WHEN READY TO CONTINUE : ":A
NS\&
1080 RETURN
2000:
2001 REM *** SETUP

```
\(2002:\)
2010 POKE 768,173: POKE 7G9:48: POKE 770.192: POKE 771,136: POKE 772:208: POKE 773:4: POKE 77 4.198: POKE 775,1: POKE 776, 240
2020 POKE 777,8: POKE 778,202: POKE 779,208: POKE 780,246: POKE 781,16E: POKE 782,0: POKE 78 3,76: POKE 784,0: POKE 785,3 : POKE 78G,9G
2030 GR: HOME
2031 COLOR = 15
2032 HLIN 0.39 AT \(0:\) HLIN 0.39 AT 39
2033 ULIN 0.39 AT \(0:\) ULIN 0.39 AT 39
2040 COLOR \(=12\)
2041 FOR I = G TO 30 STEP E
2042 ULIN I.I +3 AT 3: ULIN I,I +3 AT 36
2043 NEXT I
2050 LET \(00=1:\) LET \(01=1\)
2060 PRINT "PLAYER \# 1
PLAYER \# 2"
2070 FOR I = 1 TO 100: GOSUB 210 D: NEXT I
2080 LET \(5 F=1\)
2090 RETURN
\(2100:\)
2110 REM *** PADDLE CONTROL
\(2120:\)
\(2130 \mathrm{PD}=\mathrm{INT}(\mathrm{PDL}(0) * 10 / 7\) \(5+1): P 1=\operatorname{INT}(\mathrm{PDL}(1) *\) \(10 / 75+1)\)
2140 IF \(P Q<>D O\) THEN COLOR=日: ULIN OD,DQ + 3 AT 14: COLOR= \(4: D O=P Q:\) ULIN \(O Q: D Q+3\) AT 14
2150 IF \(\mathrm{P} 1<>01\) THEN COLOR= 0: ULIN 01,01 + 3 AT 25: COLOR= 1:01 = P1: ULIN 01:01 + 3 AT 25
```

2160 RETURN
3000:
3001 REM *** PLAY
3002:
30G0L1=5:L2=5
3070 BX = INT (RND (1) * 10) +
1G:BY = INT (RND (1) * 10)
+ 1G:BD = INT (RND (1) *
2) * 2 - 1
3071 BS = INT (RND (1) * 7) - 3
:IF BS = O THEN 3071
3075 COLDR= 15: PLOT BX,BY
3080 X2 = BX + BD:Y2 = BY + B5: GOSUB
2100
3085 IF SCRN(BX,BY) = 15 THEN
3090
308G BX = BX - BD:BY = BY - BS:BD
= - BD:BS = - BS: COLOR=
15: PLOT BX,BY: POKE D,50: POKE
1,10: CALL 7G8
3087 IF BY < 1 OR BY > 38 THEN B
Y = BY + BS:BS = - BS
3089 GOTO 3080
3090 IF }\times2<1 OR X2 > 38 THEN B
D = - BD: POKE D,100: POKE
1,10: CALL 768: GOTO 3080
3100 IF Y2< < OR Y2 > 38 THEN B
S = - BS: POKE D,100: POKE
1.10: CALL 7E8: GOTO 3080
3110 IF SCRN (X2,Y2) = O THEN 3
150
3111 IF SCRN(X2,Y2)< > 12 THEN
3125
3112 COLOR= 0: VLIN INT (Y2 / G
) * E, INT (Y2 / G) * E + 3 AT
X2: POKE 0,25: POKE 1,2: CALL
768
3115 IF X2 = 3 THEN L1 = L1 - 1
311G IF X2 = 3G THEN L2 = L2 - 1
3117 IF L1 = @ OR L2 = D THEN 35
O
3120 GOTO 3150

```
```

3125 POKE 0.50: POKE 1,10: CALL
768
3130 IF X2 < > 25 THEN BD = -
BD:BS = (YZ - OD) - (YZ - OD
(2) * 3: GOTO 3080
3140 BD = - BD:BS = (Y2 - 01) -
(Y2 - 01< 3) * 3: GOTO 3080
3150 COLOR= 日: PLOT BX,BY: COLOR=
15: PLOT X2,YZ:BX = X2:BY =
Y2: GOTO 3080
3500 RETURN
4000:
4001 REM *** END
4002 :
4010 HOME : PRINT "THE GAME IS D
UER !!!"
4020 PRINT "THE WINNER IS PLAYER
\# ":2 - (L2 = 0)
4030 RETURN

```


This is not a game. Rather, it is an excellent demonstration of how to use graphics. The idea is to simulate the effect of a dripping faucet. List through line 3035. Remember that color 0 is black. With that in mind, can you guess the function of line 3010? Line 3010 gives the color a random value between 0 and 14.The assorted colors are for the original droplet configuration. If this is not clear, change line 3016 to read: 3016 COLOR \(=2\). Enter and then RUN. Line 3030 draws the faucet. Experiment with these commands to confirm their function. Likewise, experiment with lines 3660-3717, and see if you can deduce their function.
```

10 REM ********************
11 REM *** ***
12 REM *** LEAKY FAUCET ***
1 3 REM **** ***
1 4 REM ********************
15 REM
1G REM
20 GOSUB 1000: REM INSTS
30 GOSUB 2000: REM SETUP
40 GOSUB 3000: REM PLAY!
G0 END
1000:
1001 REM *** INSTS
1002:
1010 TEXT : HOME : NORMAL
1020 UTAB 3: HTAB 8: PRINT "***
THE LEAKY FAUCET ***"
1030 UTAB 7: PRINT "THIS IS NOT
REALLY A GAME, BUT AN
EXTREMELY ENTERTAINING GRAPH
ICS DEMO.": PRINT : PRINT "W
E HOPE YOU ENJOY IT !!!"
1040 UTAB 23: INPUT "HIT RETURN
WHEN READY TO CONTINUE : ";A
NS\$
1990 RETURN
2000:
2001 REM *** SETUP
2002:
2010 GR:NU = 200: HOME: PRINT
: PRINT "<<< TURN PADDLE Ø T
0 MOUE FAUCET >>>": PRINT "<
<< HOLD BUTTON @ TO START AG
AIN >>>"
2990 RETURN
3000:
3001 REM *** PLAY
3002:
3010 COLOR= 0: FOR I = 0 T0 19: HLIN
0.39 AT I: HLIN 0.39 AT 39 -
I: NEXT : FOR I = 1 TO NU: COLOR=
INT (RND (1) * 15): PLOT (
INT (RND (1) * 38)) + 1, INT
(RND (1) * 20) + 20: NEXT I

```
```

3030 COLOR= 4: HLIN 0,2 AT 5: HLIN
0.2 AT G: HLIN 0,2 AT 7: COLOR=
1: HLIN 3:5 AT 4: HLIN 3.5 AT
5: HLIN 3.5 AT E: HLIN 3.5 AT
7: COLOR= 6: PLOT 5:8: PLOT
5.3: HLIN 3.7 AT 2
3110 I = 5
3120 5X = I:SY = 5:XX = PEEK (-
1G33G) + PEEK (- 1G33G) +
PEEK (- 1G33G) + PEEK (-
16336)
3130 COLOR= 15: PLOT 5X,5Y: GOSUB
3600
3135 52 = 5Y + 1: IF 52 > 39 THEN
3200
3140 IF SCRN(5X,52)< > THEN
3200
3145 COLOR= 0: PLOT 5X:SY:SY = 5
2: GOTO 3130
3200 LR = INT (RND (1) * 2) * 2
- 1: IF SCRN(SX + LR,SY) <
> O AND SCRN(SX - LR,SY) <
>0 THEN 3500
3215 IF SCRN(SX + LR,SY)< >
0 THEN LR = - LR: GOTO 3215
3220 52 = SX + LR: IF S2 < 1 OR S
2 > 38 THEN 3500
3225 IF SCRN(52,5Y) < > 0 THEN
3500
3230 COLOR= 0: PLOT 5X,5Y:5X = 5
2: COLOR= 15: PLOT SX,SY: GOSUB
3600
3235 IF SY < 39 THEN IF SCRN(
SX,5Y + 1) = THEN 3135
3240 GOTO 3220
3500 IF PEEK (- 1G287) < 128 THEN
3120
3510 GOTO 3010
3600 P = PDL (0)
3605 IF P < 90 THEN 3700
3607 IF P < 180 THEN RETURN
3G40 IF I = 35 THEN RETURN

```
```

3650 COLOR= 0: PLOT I - 2,2: PLOT
I - 2,4: PLOT I,8: PLOT I,3
3655 I = I + 1
3660 COLOR= 4: ULIN 5,7 AT I - 3
3670 COLOR= 1: ULIN 4.7 AT I
3680 COLOR= 6: PLOT I + 2,2: PLOT
I;3: PLOT I;8
3690 RETURN
3700 IF I = 5 THEN RETURN
3710 COLOR= 0: PLOT I + 2,2: ULIN
3,8 AT I
3715 I = I - 1
371G COLOR= 1: ULIN 4,7 AT I - 2
3717 COLOR= 6: PLOT I - 2,2: PLOT
I,3: PLOT I,8
3799 RETURN

```



If you have ever played or ever seen Simon, then you will recognize this game. You must give the numeric equivalent of a lighted box sequence. There are a number of mnemonic devices which make it easier to recall a long string, but try to develop your own. A very good player can repeat a sequence of twenty boxes, and an expert can repeat a chain of thiry. The graphics in this program are interesting. Let's take a look. Lines 2020-2025 are responsible for the four brown squares being drawn. To verify this, change line 2021 so that it reads: 2021 COLOR \(=1\). When you run the program the four boxes will be red. To change the size and shape of the four boxes, experiment with line 2024.
Experiment with any lines that have an unclear function.

```

2001 REM *** SETUP
2002:
2010
DIM SEQ(50): FOR I = 1 TO 5
D:SE(I) = INT (RND (1) * 4
) + 1: NEXT I
2020 GR : HOME
2021 COLOR= 8
2022 FOR I = 5 TO 29 5TEP 8
2023 FOR J = 29 TO 35
2024 HLIN I,I + 5 AT J
2025 NEXT J.I
2030 UTAB 21: FOR I = 5 T0 29 STEP
8: HTAB I + 4: PRINT (I + 3)
/ 8:: NEXT
2040 POKE 768:173: POKE 769:48: POKE
770.192: POKE 771,136: POKE
772,208: POKE 773,4: POKE 77
4.198: POKE 775,1: POKE 775,
240
2045 POKE 777,8: POKE 778,202: POKE
779,208: POKE 780,246: POKE
781,166: POKE 782,0: POKE 78
3.76: POKE 784,0: POKE 785,3
: POKE 786.96
2990 RETURN
3000:
3001 REM *** PLAY
3002:
3010 FOR I = 1 TO 50:SC = (I - 1
) - M: UTAB 22: HTAB 10: PRINT
"MISSES: "M" SCORE: "SC
3020 FOR J = 1 TO I: COLOR= 15: FOR
K = 29 TO 35: HLIN SE(J) * 8
- 3,5E(J) * 8 + 2 AT K: NEXT
K: POKE Ø, (5 - SE(J)) * EQ: POKE
1,50: CALL 768
3020 FOR J = 1 TO I: COLOR= 15: FOR
K = 29 TO 35: HLIN SE(J) * 8
- 3,SE(J) * 8 + 2 AT K: NEXT
K: POKE D:(5 - SE(J)) * GO: POKE
1.50: CALL 768
3030 COLOR= 8: FOR K = 29 TO 35:
HLIN SE(J) * 8 - 3,SE(J) *
8 + 2 AT K: NEXT K: NEXT J

```
```

3100 FOR J = 1 TO I
3110 IF PEEK (- 16384) < 128 THEN
3110
3120 X = PEEK (- 16384): POKE -
16368.0
3130 IF X < 177 OR X > 180 THEN
3110
3135 COLOR= 15: FOR K = 29 TO 35
: HLIN (X - 17G) * 8 - 3,(X -
17G) * 8 + 2 AT K: NEXT K: POKE
0.(5 - (X - 17G)) * E0: POKE
1.50: CALL 768
3140 COLOR= 8: FOR K = 29 TO 35:
HLIN (X - 17G) * 8 - 3.(X -
17G) * 8 + 2 AT K: NEXT K
3150 IF X - 176 = SE(J) THEN 320
\emptyset
3155 POKE 0.250: POKE 1,100: CALL
768:M = M + 1: IF M < 3 THEN
3300
31G0 RETURN
3200 NEXT J
3300 FOR PA = 1 TO 500: NEXT PA:
NEXT I: RETURN
3990 RETURN
4000 :
4001 REM *** END
4002:
4010 HOME
4020 FOR J = Ø TO 39
4030 COLOR= INT (RND (1) * 12)
* 1: HLIN 0.39 AT J
4031 COLOR= INT (RND (1) * 12)
* 1: ULIN 0.39 AT 39 - J
4032 COLOR= INT (RND (1) * 12)
* 1: HLIN 0,39 AT 39 - J
4033 COLOR= INT (RND (1) * 12)
* 1: ULIN D.39 AT J
4040 POKE D.J * 2: POKE 1,5: CALL
768: NEXT J
4045 PRINT

```
```

4050 IF M = 3 THEN PRINT "<<< I
'M SORRY YOU LOST . . . >>>": IF
SC < 1 THEN PRINT "YOU GOT
THEM ALL WRONG!!!": RETURN
4055 PRINT "<<< YOU GOT ALL 50 0
F THEM !!! >>>": RETURN

```




\section*{Miniature GOLF}

This game is a simulation of miniature golf. There are hazards, obstacles, and unplayable lies, just as in the real thing. The graphics are interesting, and merit a closer look. Type: LIST -2060. Lines 2050-2058 draw the yellow-green background. For practice, change line 2050 so that it reads: 2050 COLOR \(=6\). Enter and run. Next, list through 2115. Lines 2105-2115 draw hole \#1. Lines 2106-7-8 draw the red frame around the hole. Line 2110 draws the brown square which represents the hole. Line 2115 draws the white square which represents the ball. Line 2200 begins the graphics for hole \#2. Line 2300 begins hole \#3. Line 2400 begins hole \#4, and so on through hole \#9 (begins at 2900). It would be to your benefit to experiment with any of the lines (20002915) that are unclear. As with most programs, the hard part is moving the ball and charting its path. The ball is white, (color \(=15)\), so look for statements preceded by 'COLOR \(=15^{\prime}\) Look at statements 3110 thru 3124. The SCRN function returns the number of the color of \(\mathrm{X} 2, \mathrm{Y} 2\) and therefore tells the program what color surface the ball has landed on. The SCRN function is very useful for detecting 'hits' in all sorts of action games.
\(10 \mathrm{REM} \mathrm{RE}^{* * * * * * * * * * * * * * * * * * * ~}\)
11 REM *** \({ }^{*} * *\)
12 REM ** MINIATURE GOLF **
13 REM *** ***
14 REM \(\mathrm{RE}^{*} * * * * * * * * * * * * * * * * * *\)
15 REM
16 REM
20 GOSUB 1000: REM INSTS
30 GOSUB 2000: REM SETUP
40 GOSUB 3000: REM PLAY!
50 GOSUB 4000: REM !END!
60 END
\(1000:\)
1001 REM *** INSTS
\(1002:\)
1010 TEXT: NORMAL: HOME
1020 UTAB 1: HTAB 9: PRINT "*** MINIATURE GOLF ***"
1030 UTAB 5: PRINT "WELCOME TO T HE CAPELLA COUNTRY CLUB.
THIS BEAUTIFUL NINE-HOLE MIN IATURE GOLF COURSE IS DPEN A ND WAITING FOR YOU ! "
1035 PRINT
1040 PRINT "YOU SHOULD KNOW THE IDIOSYNCRASIES OF THE COUR SE BEFORE YOU BEGIN PLAY.
1045 PRINT: PRINT "TO PUTT THE BALL, YOU HAUE TO INPUT WHICH DIRECTION YOU WANT TO AIM IT. THERE ARE EIGHT DIRECTIONS, SHOWN BELOW, YOUR BALL IS ASSUMED TO BE AT * - "

1050 PRINT: PRINT "
21 8": PRINT " 3 * 7": PRINT "
\(5 \mathrm{E}^{\prime \prime}\)
1060 UTAB 23: INPUT "HIT RETURN WHEN READY TO CONTINUE: ":A NS \(\$\)
1070 HOME : UTAB 1: HTAB 9: PRINT
    "*** MINIATURE GOLF ***": UTAB
    5
1080 PRINT "THEN YOU MUST INPUT
    HOW HARD TO HIT THE BALL. T
    HE SPEED SHOULD BE SOME NUMB
    ER BETWEEN 0.00 AND 5.00.
    FOR EXAMPLE, YOUCOULD HIT TH
    E BALL A RELATIUE SPEED OF
    3.2.
1085 PRINT
1090 PRINT "IT WILL TAKE A FEW T
    RIES BEFORE YOU GET THE FEEL OF HOW HARD TO PUTT THE BAL
    L. "
1095 PRINT
1100 PRINT "ALSD, THERE ARE FOUR
        TYPES OF HAZARDS ONTHE COUR
    SE. YOU SHOULD BE AWARE OF
    WHATTHEY ARE AND WHAT AFFECT
        THEY HAVE ON YOU AND YOUR
        BALL. "
1110 UTAB 23: INPUT "HIT RETURN
    WHEN READY TO CONTINUE: ":A
    NS \(\ddagger\)
1120 HOME : UTAB 1: HTAB 9: PRINT
    "*** MINIATURE GOLF ***": VTAB
    5
1130 PRINT "BLOCKS: THESE ARE LI
    KE WALLS. YOU MUST PUTT ARO
    UND THEM. "
1135 PRINT
1140 PRINT "YELLOW TRAPS REPRESE
    NT SAND. YOUR BALL CANNOT P
    ENETRATE THROUGH A SAND TRAP
    - THE PENALTY FOR LANDING
    IN SAND IS ONE STROKE. "
1145 PRINT
1150 PRINT "WATER: LIKE SAND, TH
    ESE BLUE HAZARDS WILL SLD
    W AND STOP YOUR BALL. THE
    PENALTY FOR LANDING IN W
    ATER IS DNE STROKE. "


2020 DIMDI \((8,2): F O R I=1\) TO 8 : READ DI(I,1),DI(I,2): NEXT : DATA \(\quad,-1,-1,-1,-1,0\) , \(-1,1,0,1,1,1,1,0\). 1,-1
2045 GR: HOME: RETURN
2050 COLOR \(=12\)
\(2052 \mathrm{FOR} \mathrm{I}=0 \mathrm{TO} 19\)
2054 HLIN 0.39 AT I: HLIN 0.39 AT 39 - I
2056 ULIN 0.39 AT I: ULIN 0.39 AT 39-I
2058 NEXT: RETURN
2100 REM *** HOLE 1
2105 GOSUB 2050
2106 COLOR \(=1\)
2107 HLIN 10.24 AT E: HLIN 10.24 AT 33
2108 ULIN G.33 AT 10: ULIN G:33 AT 24
2110 COLOR= 8: PLOT 17.9
\(2115 \mathrm{BY}=32: \mathrm{BX}=\mathrm{INT}(\mathrm{RND}(1)\) * 11) + 12: COLOR \(=\) 15: PLOT BX ,BY: RETURN
2200 REM *** HOLE 2
2205 GOSUB 2050: COLOR= 1: HLIN 10.24 AT 33: ULIN G.33 AT 10 : ULIN 16.33 AT 24: HLIN 10. 35 AT E: HLIN 24,35 AT 16: ULIN E.1G AT 35

2207 COLOR= 2: VLIN 18.19 AT 20: ULIN 17.21 AT 21: ULIN 17.2 3 AT 22: ULIN 16.2G AT 23
2210 COLOR \(=8:\) PLOT 32:11
\(2215 \mathrm{BY}=32: B X=\mathrm{INT}\) (RND (1) * 11) + 12: COLOR = 15: PLOT BX ,BY: RETURN
2300 REM *** HOLE 3
2305 GOSUB 2050: COLOR \(=1:\) HLIN 24.35 AT 6: HLIN 10.24 AT 15 : HLIN 24.35 AT 24: HLIN 10. 24 AT 33: ULIN E:15 AT 24: ULIN 15.33 AT 10: ULIN 24.33 AT 2 4: ULIN E.24 AT 35
\begin{tabular}{|c|c|}
\hline 307 & COLOR= 13: PLOT 30.23: ULIN 22,23 AT 31: ULIN 20,23 AT 3 \\
\hline & 2: ULIN 19.23 AT 33: VLIN 17 \\
\hline & ,23 AT 34 \\
\hline 2310 & COLOR = 8: PLOT 32,9 \\
\hline 2315 & \(B Y=32: B X=\) INT ( RND (1) \\
\hline & 11) + 12: \(\operatorname{COLOR}=15:\) PLOT BX \\
\hline & ,BY: RETURN \\
\hline 2400 & REM *** HOLE 4 \\
\hline 2405 & GOSUB 2050: COLOR \(=1:\) HLIN \\
\hline & 5.35 AT E: HLIN 15,25 AT 15: \\
\hline & HLIN 25,35 AT 24: HLIN 5,15 \\
\hline & AT 33: ULIN 6,33 AT 5: ULIN \\
\hline & 15,33 AT 15: ULIN 15.24 AT 2 \\
\hline & 5: ULIN E,24 AT 35 \\
\hline 2407 & COLOR \(=13:\) PLOT 15,7: ULIN \\
\hline & 7,8 AT 16: ULIN 7,9 AT 17: ULIN \\
\hline & 7.9 AT 18: ULIN 7.8 AT 19: PLOT \\
\hline & 20.7 \\
\hline 2408 & COLOR = 2: PLOT 15,14: ULIN \\
\hline & 13.14 AT 16: ULIN 13.14 AT \\
\hline & 7: ULIN 13.14 AT 18: ULIN 13 \\
\hline & ,14 AT 19: ULIN 13.14 AT 20: \\
\hline & ULIN 12,14 AT 21: ULIN 11,1 \\
\hline & 4 AT 22 \\
\hline 2410 & COLOR \(=8: \mathrm{PLOT} 32,21\) \\
\hline 2415 & BY = 32:BX = INT ( RND (1) \\
\hline & 9) + E: COLOR = 15: PLOT BX, \\
\hline & Y: RETURN \\
\hline 2500 & REM *** HOLE 5 \\
\hline 2505 & GOSUB 2050: COLOR \(=1: ~ H L I N\) \\
\hline & 10.24 AT 6: HLIN 10.24 AT 33 \\
\hline & : ULIN 6,33 AT 10: ULIN E,33 \\
\hline & AT 24: HLIN 13,21 AT 17: ULIN \\
\hline & 12,17 AT 13: ULIN 12,17 AT 2 \\
\hline & 1 \\
\hline 2510 & COLOR= 8: PLOT 17.9 \\
\hline 2515 & BY = 32:BX = INT ( RND (1) \\
\hline & 11) + 12: COLOR \(=15: ~ P L O T ~ B X ~\) \\
\hline & ,BY: RETURN \\
\hline 600 & REM *** HOLE E \\
\hline
\end{tabular}

2605 GOSUB 2050: COLOR= 1: HLIN 10.24 AT 33: ULIN E.33 AT 10 : ULIN 16.33 AT 24: HLIN 10. 35 AT E: HLIN 24,35 AT 1G: ULIN E,1G AT 35
2607 HLIN 26.29 AT 9: HLIN 2G. 29 AT 13: ULIN 9.13 AT 2 G
2608 COLOR= 9: ULIN 13.18 AT 21: ULIN 13.18 AT 22: ULIN 13:1 8 AT 23: ULIN 13.15 AT 24: ULIN 14.15 AT 25: PLOT 26.15

2610 COLOR \(=8:\) PLOT 32,11
\(2615 \mathrm{BY}=32: B X=\) INT (RND (1) * 11) + 12: COLOR= 15: PLOT BX ,BY: RETURN
2700 REM *** HOLE 7
2705 GOSUB 2050: COLOR= 1: HLIN 5.15 AT E: HLIN 15,35 AT 12: HLIN 5,25 AT 24: HLIN 25.35 AT 33: VLIN G:24 AT 5: ULIN G:12 AT 15: ULIN 24.33 AT 25 : ULIN 12.33 AT 35
2707 COLOR=2: ULIN 1G.23 AT E: ULIN 17.23 AT 7: ULIN 18:23 AT 8: ULIN 18,23 AT 9: ULIN 20,23 AT 10: PLOT 11.23
2708 COLOR \(=9:\) ULIN 13.28 AT 31: ULIN 13.28 AT 32: ULIN 13.2 8 AT 33: ULIN 13,28 AT 34: HLIN 25,30 AT 13: HLIN 25,30 AT 1 4: HLIN 25.30 AT 15
2710 COLOR \(=8:\) PLOT 10.9
\(2715 B Y=32: B X=\) INT (RND (1) *
7) + 2G: COLOR= 15: PLOT BX,

BY: RETURN
2800 REM \(* * *\) HOLE 8
2805 GOSUB 2050: COLOR= 1: HLIN 5.35 AT G: HLIN 15,25 AT 15: HLIN 5.15 AT 24: HLIN 25,35 AT 33: ULIN G:24 AT 5: ULIN 15.24 AT 15: ULIN 15.33 AT 2 5: ULIN E.33 AT 35

2807 COLOR= 9: ULIN 7:8 AT 25: ULIN 7.9 AT 2G: ULIN 7.11 AT 27: ULIN 7.11 AT 28: ULIN 7.12 AT 29:

ULIN 7.12 AT 30: ULIN 7.17 AT
31: ULIN 7.18 AT 32: ULIN 7. 19 AT 33: ULIN 7,20 AT 34
2808 COLDR= 13: ULIN 11.13 AT 8: ULIN 10.15 AT \(9:\) ULIN 9.15 AT 10: ULIN 9.16 AT 11: ULIN 9 . 16 AT 12
2810 COLOR = 8: PLOT 10.21
\(2815 \mathrm{BY}=32: B X=\) INT (RND (1) * 7) \(+26: \operatorname{COLOR}=15:\) PLOT BX, BY: RETURN
290 REM *** HOLE 9
2905 GOSUB 2050: COLOR= 1: HLIN 5.35 AT E: HLIN 5.25 AT 18: HLIN 25.35 AT 33: ULIN G:18 AT 5: ULIN 18.33 AT 25: ULIN E.33 AT 35
2907 HLIN 8.11 AT 9: ULIN 9.15 AT 11
2908 COLOR= 9: HLIN 25.34 AT 7: HLIN 27,34 AT 8: HLIN 29.34 AT 9: HLIN 30.34 AT 10: HLIN 31.3 4 AT 11
2910 COLOR= 8: PLOT 8.12
\(2915 \mathrm{BY}=32: B X=\operatorname{INT}(\mathrm{RND}(1)\) * 7) + 26: COLOR= 15: PLOT BX, BY: RETURN
\(3000:\)
3001 REM *** PLAY
\(3002:\)
3010 FOR \(H O=1 \mathrm{TO} 9: B C=12\)
3020 ON HO GOSUB 2100.2200 .2300 , \(2400.2500 .2600,2700.2800 .290\) 0
3030 HOME : PRINT "HOLE NUMBER: "HO" PAR: "HA(HO,5)" SCORE:
"SC
3031 PRINT "TRAPS: ": IF HA(HO,
1) THEN PRINT "WATER ":

3032 IF HA(HO,2) THEN PRINT "SA ND ":

```

 3200 IF DI = 1 OR DI = 3 THEN DI
 = DI + 4: GOTO 3100
 3201 IF DI = 7 OR DI = 5 THEN DI
 = DI - 4: GOTD 3100
 3210 ON DI / 2 GOTO 3220.3240.32
 60.3280
 3220 IF SCRN(K2 + 1.Y2) = 1 AND
 SCRN(X2,Y2 + 1) = 1 THEN D
 I = G: GOTO 3100
 3225 IF SCRN(X2 + 1,Y2) = 1 THEN
 DI = 4: GOTO 3100
 3230 IF SCRN(X2,Y2 + 1) = 1 THEN
 DI = 8: GOTO 3100
 3235 DI = E: GOTO 3100
 3240 IF SCRN(X2 + 1,Y2) = 1 AND
 SCRN(}\times2,Y2-1)=1 THEN D
 I = 8: GOTD 3100
 3245 IF SCRN (}122+1,Y2)=1 THE
 DI = 2: GOTO 3100
 3250 IF SCRN(X2,Y2 - 1) = 1 THEN
 DI = G: GOTO 3100
 3255 DI = 8: GOTD 3100
 3260 IF SCRN(K2 - 1,Y2) = 1 AND
 SCRN(}\times2,Y2-1)=1 THEN D
 I = 2: GOTO 3100
 3265 IF SCRN(X2 - 1,Y2) = 1 THEN
 DI = 8: GOTO 3100
 3270 IF SCRN(X2,Y2 - 1) = 1 THEN
 DI = 4: GOTO 3100
 3275 DI = 2: GOTD 3100
 3280 IF SCRN(X2 - 1,Y2) = 1 AND
 SCRN(X2,Y2 + 1) = 1 THEN D
 I = 4: GOTD 3100
 3285 IF SCRN(X2 - 1,Y2) = 1 THEN
 DI = E: GOTO 3100
 3290 IF SCRN(X2,Y2 + 1) = 1 THEN
 DI = 2: GOTO 3100
 3295 DI = 4: GOTO 3100
 3300 IF TF THEN 3310
 3305 TF = 3:SC = 5C + 1: REM TRA
 P FLAG
 3310 COLOR= BC: PLOT BX,BY: COLOR=
 15: PLOT X2:Y2:BX= X2:BY=
 Y2:BC = 2
    ```
```

3320 GOTO 3900
3400 IF TF THEN 3410
3405 TF = 3:SC = SC + 1: REM TRA
P FLAG
3410 COLOR= BC: PLOT BX,BY: COLOR=
15: PLOT X2,Y2:BX = X2:BY =
Y2:BC = 13
3420 GOTO 3900
3500 IF UF THEN 3520
3505 UF = 1: REM UNEVEN FLAG, HA
UE WE ROLLED BALL OFF COURSE
YET ?...
3510 DI = DI + INT (RND (1) * 2
) * 2-1
3515 IF DI = Ø THEN DI = 8
3516 IF DI = 9 THEN DI = 1
3520 COLOR= BC: PLOT BX,BY: COLOR=
15: PLOT XZ,YZ:BX = X2:BY =
Y2:BC = 9: GOTO 3900
3600 COLOR= 12: PLOT BX,BY: COLOR=
15: PLOT X2,Y2: COLOR= 8: PLOT
K2,Y2
3G02 DI = DI + INT (RND (1) * 2
) * 2-1
3G04 IF DI = @ THEN DI = 8
3605 5P = 5P - .4: IF SP > O THEN
X2 = X2 + DI(DI,1):Y2 = Y2 +
DI(DI,2): GOTO 3110
360G IF DI = 9 THEN DI = 1
3610 PRINT BELL$BELLकBELL$:SC =
SC + 1: GOTO 3990
3900 XX = PEEK (- 16336) - PEEK
(- 16336)
3902 IF TF > 0 THEN TF = TF - 1:
IF TF = @ THEN 3910
3905 5P = 5P - .2: IF SP > 0 THEN
3100
3910 5C = 5C + 1: GOTO 3030
3990 NEXT HO: RETURN
4000:
4001 REM *** END
4002:

```
```

4010 TEXT : HOME : UTAB 3: HTAB
9: PRINT "*** MINIATURE GOLF
***": UTAB 7
4020 PRINT BELL\$BELLकBELLक"THE G
AME IS OUER !!!"
4022 PRINT
4025 PRINT "ON THE PAR 27 COURSE
, YOU SHOT ": PRINT "A ROUND
OF "SC". THAT IS AN": PRINT
"AVERAGE OF "SC / g" SHOTS P
ER HOLE. "
4030 UTAB 22: PRINT "HOPE YOU EN
JOYED THE GAME! "
4990 RETURN

```



This is a one-man paddle game. The object is to shoot the moving targets. Different colored targets are worth different point scores. For the most part, this game is a measure of timing, but there is also a little luck involved. If you read through MUBBLE CHASE and understood it all, then these short graphic hints and explanations may seem mundane. First, load the program. Type: LIST-2030. In terms of drawing the original game setup, lines 2020 through 2024 do the majority of the work. 2020 instructs the computer to switch from the text mode into the GRaphics (color) mode. 2021 starts a loop consisting of ten individual loops (passes). 2022 will change the color each time I changes. 2023 draws the lines that will comprise the launching pad (a collection of ten lines). To get a better idea of line 2021, type: 2021 FOR I = 1 TO 11 STEP 2. Check line 3547. You will note that the first of the two instructions sets the color to 15 (white). Since the missle that you launch is the only all-white figure you see, it follows that SX,SY are the missile's \(\mathrm{X}, \mathrm{Y}\) coordinates.

10 REM \(\mathrm{RE}^{* * * * * * * * * * * * * * * * * * * * ~}\)
11 REM *** ***
12 REM \({ }^{*} * *\) MOUING TARGET \({ }^{*} * *\)
13 REM *** ***

15 REM
16 REM
20 GOSUB 1000: REM INSTS
30 GOSUB 2000: REM SETUP
40 GOSUB 3000: REM PLAY!
50 GOSUB 4000: REM !END!
G0 END
\(1000:\)
1001 REM *** INSTS
\(1002:\)
1010 TEXT: NORMAL: HOME
1020 UTAB 3: HTAB 10: PRINT "*** MOUING TARGET ***"
1030 UTAB 7: PRINT "IN THIS GAME - YOU CONTROL A MISSLE'S

LAUNCH SITE, THE LAUNCHER I 5 CONTROLLEDBY PADDLE ©.. "

1040 PRINT: PRINT "PRESSING THE BUTTON ON THE PADDLE WILL
RELEASE A ROCKET. TRY TO HI T ONE OF THETHREE MOVING TAR GETS ABOUE YOU."
1050 PRINT: PRINT "DIFFERENT CO LORS ARE WORTH DIFFERENT AMOUNTS OF POINTS. SHOOT FOR THE BEST SCORE."
1060 UTAB 23: INPUT "HIT RETURN WHEN READY TO CONTINUE: ":A NS \(\$\)
1990 RETURN
\(2000:\)
2001 REM *** SETUP
\(2002:\)
2010 DIM TA (3,4)
2015 FOR I \(=1\) TO 3:TA \((I, 1)=I N T\)
( RND (1) * 37):TA(I,2) = INT
( RND (1) * (4 + (I * 2))) +
\(1: T A(I, 0)=\operatorname{INT}(\mathrm{RND}(1) *\)
2) * 2-1
```

2016 TA(I,3)=0:TA(I;4)= INT

```
    RND (1) * 20) + 1: NEXT
2020 GR
2021 FOR I = 1 TO 10
2022 COLOR = I
2023 HLIN (I - 1) * 4, (I - 1) *
        \(4+3\) AT 39
2024 NEXT
2030 HOME : PRINT " 102030
    \(40 \quad 50 \quad 60 \quad 70 \quad 80 \quad 901001\)
2990 RETURN
\(3000:\)
3001 REM *** PLAY
\(3002:\)
3010 REM
3020 GOSUB 3G00: REM MQVE TARGE
    TS
\(3040 \mathrm{NM}=\mathrm{NM}+1:\) IF NM<200 THEN
        3020
\(3500 \mathrm{P}=\mathrm{INT}(\mathrm{PDL}(0) / \mathrm{G}, 5): \mathrm{IF}\)
        \(P P=P\) THEN 3520
3510 COLOR= \(0:\) VLIN 37.38 AT PP:
                COLOR= 12: ULIN 37,38 AT P:
        \(P P=P\)
3520 IF F THEN 3540
3525 IF PEEK ( - 16287) < 128 THEN
                RETURN
\(3530 \mathrm{~F}=1: 5 \mathrm{P}=\mathrm{PP:SY}=36\)
3540 COLOR \(=0:\) PLOT \(5 X, 5 Y: 5 Y=5\)
        \(Y-1\)
3542 IF PEEK ( - 1G287) > 127 THEN
    3530
3545 IF \(5 Y<\theta\) THEN \(F=\emptyset:\) RETURN
3546 IF SCRN \((5 X, 5 Y)<>0\) THEN
        3551
3547 COLOR \(=15:\) PLOT 5X:SY: RETURN
\(3551 \mathrm{Z}=(5 Y>22)+(5 Y>12)+\)
    (SY > 2)
\(3552 \mathrm{PT}=\mathrm{PT}+\operatorname{SCRN}(5 X, 5 Y) *(4\)
        - Z)
\(3553 \mathrm{~F}=0: \mathrm{TA}(2,3)=0: T A(Z, 4)=\)
    INT (RND (1) * 20) +1
```

3554 TA(Z,0) = INT (RND (1) * 2
) * 2 - 1:TA(Z,2) = INT (RND
(1) * (4 + (I * 2))) + 1
3555 XX = PEEK (- 1633G) + PEEK
(- 16336) - PEEK (- 16336
) + PEEK (- 16336)
3560 HOME : PRINT : PRINT "<<< Y
OUR SCORE IS "PT" >>>"
3565 RETURN
3600 FOR I = 1 TO 3
3602 GOSUB 3500
3G05 COLOR= Ø: FOR J = I * 10 -
5 TO I * 10 - 3: HLIN TA(I,1
),TA(I,1) + 2 AT J: NEXT
3E15 TA(I,1) = TA(I,1) + TA(I,0)
3616 TA(I,3) = TA(I,3) + 1: IF TA
(I,3) = TA(I,4) THEN TA(I,3)
= \emptyset:TA(I,4) = INT (RND (1
) * 20) + 1:TA(I,0) = INT (
RND (1) * 2) * 2 - 1:TA(I,2
) = INT (RND (1) * (4 + (I
* 2))) + 1
3621 IF TA(I,1) < \ THEN TA(I,1)
= 3G
3622 IF TA(I,1) > 36 THEN TA(I,1
) = D
3625 COLOR= TA(I,2): FOR J = I *
10-5 TO I * 10- 3: HLIN T
A(I,1),TA(I,1) + 2 AT J: NEXT
3630 NEXT I: RETURN
4000:
4001 REM *** END
4002:
4010 HOME : PRINT "THE GAME IS O
UER !!!": PRINT "YOUR FINAL
SCORE IS "PT
4990 RETURN

```


This one-man paddle game is a test of dexterity. The challenge is to maneuver the paddle so that the flying points do not collide with you. To be sure, there is some luck involved. There is an abundance of easy to understand GRaphics in this program, so it is time to begin looking at them. Line 2010 draws a white perimeter around the game board (field of play). To better understand the function of 3040 and 3041, type: 3040 COLOR=2. When you run the program, all of the points will be blue (COLOR=2). Line 3041 draws the points at their new \(\mathrm{X}, \mathrm{Y}\) coordinates \((\mathrm{BP}(\mathrm{K}, 1), \mathrm{BP}(\mathrm{K}, 2))\). Back at line 3020, the old \(\mathrm{X}, \mathrm{Y}\) coordinates of each point are blacked out (COLOR \(=0\) ). If you do not perceive the significance of this line, type: 3020 and return. Now when you run the program, the path of each point will be seen.
10 REM \(* * * * * * * * * * * * * * * * * * *\)
11 REM \(* * *\) ***
12 REM *** POINT ATTACK ***
13 REM *** ***
14 REM \(* * * * * * * * * * * * * * * * * * * *\)
15 REM
16 REM
20 GOSUB 1000: REM INSTS
30 GOSUB 2000: REM SETUP
40 GOSUB 3000: REM PLAY!
50 GOSUB 4000: REM !END!
G0 END
\(1000:\)
1001 REM *** INSTS
\(1002:\)
1010 TEXT : NORMAL: HOME
1020 UTAB 3: HTAB 10: PRINT "***
POINT ATTACK ***"
1030 UTAB 7: PRINT "IN THIS GAME
                YOU WILL CONTROL THE MOVE-
    MENT OF A PADDLE IN THE MIDD
    LE DF THE SCREEN BY MOVING
        PADDLE 0."
    1040 PRINT: PRINT "THERE WILL B
        E A FLYING POINT THAT WILL
        BOUNCE AROUND ON THE WALLS.
        THE POINT WILL TRY TO HIT
        YOU, BUT DON'T LET IT."
1050 PRINT: PRINT "AFTER AWHILE
        - ANOTHER POINT WILL BE
        ADDED TD THE FIELD OF PLAY,
        AND YOUR PADDLE WILL GROW
        LARGER AVOID BEING HIT
    FOR AS LONG AS YOU CAN."
    1060 UTAB 23: INPUT "HIT RETURN
        WHEN READY TO CONTINUE: ":A
        NS \({ }^{\circ}\)
    1990 RETURN
    \(2000:\)
    2001 REM *** SETUP
    \(2002:\)
    2010 GR: COLDR= 15: HLIN D.39 AT
        0: HLIN 0.39 AT 39: ULIN 0.3
        9 AT 0: ULIN ©. 39 AT 39
```

2020 DIM BP(10,2),BD(10,2)
2030 FOR I = 1 TO 10:BP(I,1) = 2
:BP(I,2) = INT (RND (1) *
37) + 2:BD(I,1) = 1:BD(I,2) =
INT (RND (1) * 2) * 2 - 1:
NEXT
2040 X = 20
2105 POKE 768,173: POKE 769,48: POKE
770,192: POKE 771,136: POKE
772,208: POKE 773,4: POKE 77
4.198: POKE 775,1: POKE 776,
240
2110 POKE 777,8: POKE 778,202: POKE
779,208: POKE 780,246: POKE
781,166: POKE 782,0: POKE 78
3.76: POKE 784,0: POKE 785,3
: POKE 786,96
2990 RETURN
3000:
3001 REM *** PLAY
3002:
3010 FOR H = 1 TO 30:X = X - 1: HOME
: PRINT : PRINT "<<< SCORE =
==> "H" >>>": FOR J = 1 TO 2
5
3015 I = H: IF I > 10 THEN I = 10
3016 FOR K = 1 TO I
3020 COLOR= 0: PLOT BP(K,1),BP(K
,2)
3025 BP(K,1) = BP(K,1) + BD(K,1):
BP(K,2) = BP(K,2) + BD(K,2)
3030 IF BP(K,1) = 1 OR BP(K,1) =
38 THEN BD(K,1) = - BD(K,1)
: POKE D. INT (RND (1) * 25
6): POKE 1,10: CALL 768
3031 IF BP(K,2) = 1 OR BP(K,2) =
38 THEN BD(K,2) = - BD(k,2)
: POKE D. INT (RND (1) * 25
G): POKE 1,10: CALL 768
3035 IF SCRN(BP(K,1),BP(K,2)) =
15 THEN RETURN
3040 COLOR= K

```
```

3041 PLOT BP(K,1),BP(K,2)
3045 IF }X<1\mathrm{ THEN }X=
3050 COLOR= 0: ULIN X,X + H + 2 AT
20
3052 P = PDL (0): IFP > 128 THEN
X = X + 1: GOTO 305G
3055 X = X-1
3056 IF X > 38-(H + 2) THEN X =
38-(H+2)
3 0 5 7 ~ I F ~ X < 1 ~ T H E N ~ X = 1 ~
30G0 COLOR= 15: ULIN X,X + H + 2
AT 20
3070 POKE 0,2: POKE 1:1: CALL 7G
8
3099 NEXT K,J,H
3990 RETURN
4000:
4001 REM *** END
4002:
4010 HOME : PRINT "THE GAME IS O
UER !!!"
4020 PRINT "YOU'RE SCORE IS "H",
CONGRATULATIONS !!!"
4990 RETURN

```


In this game you try to avoid being captured by the killer robots. Actually, escaping from the robot's relentless pursuit is most difficult. Because the pursuit is entirely pre-determined, it might be a good idea to chart your course before you make your first move. Starting at line 2100, the text mode is completed and the graphics mode is begun. Remember, once you are in the graphics mode, the HOME command only clears the bottom four rows, which are reserved for text. Note that line 2090 sets all values of \(\mathrm{FI} \%(\mathrm{I}, 0)\) equal to two. Line 2095 does the same thing to FI(0,I). Now, when line 2110 is executed, a deep blue perimeter is drawn (COLOR \(=\mathrm{FI}(\mathrm{I}, \mathrm{J})\). Line 2075 sets \(\mathrm{FI}(\mathrm{OX}, \mathrm{OY}\) ) to 15. Line 3025 sets the color to 15 (white). Since you are represented by the white square, it would be understandable for you to experiment with these two instructions to see what and how they function.

10 REM \(\mathrm{RE}^{* * * * * * * * * * * * * * * * * * ~}\)
11 REM *** ***
12 REM *** ROBOT CHASE ***
13 REM *** ***
\(14 \mathrm{REM} \mathrm{RE}^{* * * * * * * * * * * * * * * * * * * ~}\)
15 REM
16 REM
20 GOSUB 1000: REM INSTS
30 GOSUB 2000: REM SETUP
40 GOSUB 3000: REM PLAY!
50 GOSUB 4000: REM !END!
GD END
\(1000:\)
1001 REM *** INSTS
\(1002:\)
1010 TEXT: NORMAL: HOME
1020 UTAB 2: HTAB 10: PRINT "*** ROBOT CHASE ***"
1030 UTAB 5: PRINT "IN ROBOT CHA SE, YOU ARE AN EXPLORER WHO HAS LANDED HIS SPACESHIP ON A HOSTILE PLANET."
1040 PRINT: PRINT "SEVERAL PROT ECTOR ROBOTS ARE TRYING TO CAPTUE YOU. IF YOU CAN REAC H A BASE, YOU WILL BE SAFE BEHIND ITS PROTECTIUE FORC E FIELD."
1050 PRINT: PRINT "HERE'S HOW T HINGS WORK: ": PRINT : PRINT " BLUE - AN EXPLOSIUE FEN CE (BAD!)"
1060 PRINT " WHITE - YOU"
1070 PRINT " GREEN - ATTACKING ROBOT (BAD!)"
1080 PRINT " DRANGE- PROTECTIU E BASE (GOOD!!!)"
1090 UTAB 23: INPUT "HIT RETN WHEN READY TO CONTINUE: ":A NS \(\$\)
1100 HOME : UTAB 11
1110 PRINT" 321 "
1111 PRINT " I/
TH
IS IS YOUR CHOICE"
```

1112 PRINT "
4-+-8
OF
MOUEMENT"
1113 PRINT " /I TH
ROUGH THE MAZE"
1114 PRINT " 5 G 7"
1120 UTAB 23: INPUT "HIT RETURN
WHEN READY TO CONTINUE: ";A
NS\$
1990 RETURN
2000:
2001 REM *** SETUP
2002:
2010 DIM FI%(21,11)
2015 DEF FN R(X) = INT (RND (
1) * X) + 1
2020NR = 4 + FN R(5): DIM RO%(5
,2)
2021NO = INT ((NR - 4) / 2) + 1
2025 FOR I = 1 TO NR
2030RX = FNR(20):RY = FNR(10
)
2035 IF FI%(RX,RY) THEN 2030
2040 FI%(RX,RY) = 4:RO%(I,1) = RX
:RO%(I,2) = RY: NEXT I
2045 FOR I = 1 TO NO
2050 OX=FNR(20):0Y=FNR(10
)
2055 IF FI%(OX,OY) THEN 2050
20G0 FI%(DX,OY) = 9: NEXT I
2070 YX = FNR(20):YY=FNR(10
)
2075 FI%(YX,YY) = 15
2090 FOR I = 0 TO 21:FI%(I,0)=
2:FI%(I,11) = 2: NEXT I
2095 FOR I = D TO 11:FI%(0,I) =
2:FI%(21,I) = 2: NEXT I
2100 GR : HOME
2110 FOR I = O TO 21: FOR J= = TO
11: COLOR= FI%(I;J): PLOT I +
9:J + 14: NEXT J.I

```
```

2200 DIM DI(8,2): FOR I = 1 TO 8
: READ DI(I,1),DI(I,2): NEXT
I: DATA 1,-1,0,-1,-1,-1,-1,
0,-1,1,0,1,1,1,1,0
2990 RETURN
3000:
3001 REM *** PLAY
3002:
3010 HOME : PRINT "3 2 1": PRINT
"4 + 8": PRINT "5 6 7 W
HICH DIRECTION ===> "; CHR\&
(7):: GET ANS\&:ANS = UAL (A
NS*): IF ANS < 1 OR ANS > 8 THEN
3010
3015 HOME
3020 X2 = YX + DI(AN,1):Y2 = YY +
DI(AN,2)
3025 COLOR= 0: PLOT YX + 9.YY +
14: COLOR= 15: PLOT X2 + 9,Y
2 + 14
3030 IF FI%(X2,Y2) = 2 THEN WL =
0: RETURN : REM FENCE
3031 IF FI%(X2,Y2) = 4 THEN WL =
|: RETURN : REM ROBOT
3032 IF FI%(X2,Y2) = 9 THEN WL =
1: RETURN : REM BASE
3035 FI%(YX,YY) = D:YX = X2:YY =
YZ:FI%(YX,YY) = 15
3040 FOR I = 1 TO NR
3045 IF FN R(4) = 1 THEN X2 = FN
R(3) - 2:Y2 = FN R(3) - 2: GOTO
3055
3050 X2 = SGN (YX - RO%(I,1)):Y2
= SGN (YY - RO%(I,2))
3055 X2 = X2 + RO%(I,1):Y2 = Y2 +
RO%(I,2): IF FI%(X2,YZ) = 2 OR
FI%(X2,Y2) = 4 OR FI%(X2,Y2)
= 9 THEN 3045
3060 COLOR= 0: PLOT RO%(I,1) + 9
,RO%(I,2) + 14: COLOR= 4: PLOT
K2 + 9,Y2 + 14
3065 IF FI%(X2,Y2) = 15 THEN WL =
0: RETURN : REM HUMAN

```
\(3070 \mathrm{FI} \%(R \square \%(I, 1), R \square \%(I, 2))=0: R\) \(0 \%(I, 1)=K 2: R O \%(I, 2)=Y 2: F\) \(I \%(R O \%(I, 1)\) R R \(\%(I, 2))=4\)
3075 NEXT I: GOTO 3010
3990 RETURN
\(4000:\)
4001 REM *** END
\(4002:\)
4010 HOME : PRINT "THE GAME IS \(\square\) UER !!!"
4011 IF WL THEN PRINT "YOU'VE B EATEN THE KILLER ROBOTS (YEA H!)"
4012 IF NOT WL THEN PRINT "THE KILLER ROBOTS GOT YOU !!! ( SORRY..)"
4013 PRINT CHR末 (7): CHR\& (7): CHR
(7)

4990 RETURN



In this exciting game, you try to discern the combination to a safe. Your ears, as well as your eyes, are important tools. The object of the game is to open an enemy agent's safe before the thirty second delayed explosion kills you. Once you grasp all of the rules, you will discover that being a safe cracker is not too easy! Armed with a sophisticated safe cracking device, you try to detect the numbers in the combination one by one. Each time you pinpoint a number, you turn the paddle the other way until you pinpoint the next number in the combination. When you have identified the entire three-number combination, then the safe will open, and the explosion will be postponed. The three numbers in the combination are set by lines 2010, 2011, and 2012. You will note the word 'INVERSE' in line 2030. NORMAL sets the print mode to white letters on a black background. INVERSE reverses this so that you get black letter on a white background. Lines 2030 and 2035 draw the outline of the safe while in the INVERSE mode. That is how a white outine is drawn around the safe.

Our resident critic did not think that
\[
\lll \text { B O O M } \ggg
\]
fulfilled the promise of a "terrible explosion". As a programmer trainee this is just the sort of routine you can manufacture to match your own expectations.

11 REM *** ***
12 REM *** SAFE CRACKER ***
13 REM *** ***
14 REM \(\mathrm{RE}^{*} \mathrm{RE}^{*} * * * * * * * * * * * * * * * *\)
15 REM
16 REM
20 GOSUB 1000: REM INSTS
30 GOSUB 2000: REM SETUP
40 GOSUB 3000: REM PLAY!
50 GOSUB 4000: REM !END!
ED END
\(1000:\)
1001 REM *** INSTS
\(1002:\)
1010 TEXT: NORMAL: HOME
1020 UTAB 3: HTAB 10: PRINT "*** SAFE CRACKER ***"
1030 UTAB 7: PRINT "YOU ARE A GO UERNMENT SPY, AND YOU MUST
RETRIEVE SOME CLASSIFIED DOC UMENTS WHICHWERE STOLEN BY F OREIGN AGENTS."
1040 PRINT : PRINT "THE DOCUMENT \(S\) ARE KEPT IN A UAULT WHICH YOU MUST OPEN."
1050 PRINT: PRINT "YOU HAVE BEE N GIUEN A SOPHISTICATED SAFE CRACKING DEVICE. WHENEVER T HE TUMBLERS IN A SAFE CLICK INTO PLACE, THE DEUICE WILL ALSO MAKE A CLICKING SOUND. IF YOUEITHER DIRECTLY HIT OR PASS BY A NUMBER"
1052 PRINT "IN THE COMBINATION. THEN THE DEVICE WILL EMIT A CLICK."
1055 PRINT: PRINT
10G0 INPUT "HIT RETURN WHEN READ Y TO CONTINUE: ":ANS
1070 HOME: UTAB 3: HTAB 10: PRINT "*** SAFE CRACKER ***": UTAB 7
```

1080 PRINT "START BY TURNING PAD
DLE O ALL THE WAY TOTHE LEFT
(VALUE OF ©). THEN MOVE T
HE PADDLE TO THE RIGHT UNTI
L YOU GET THE FIRST NUMBER
"
1090 PRINT : PRINT "WHEN YOU DIS
COUER THE FIRST NUMBER. THEN
TURN TO THE LEFT UNTIL YOU G
ET THE 2ND NUMBER. FINALLY
, TURN THE DIAL BACK TO THE
RIGHT FOR THE THIRD AND LAST
NUMBER, "
1095 PRINT : PRINT "IF YOU GO PA
ST A NUMBER, THEN YOU MUST
TURN THE DIAL ALL THE WAY TO
THE LEFT, AND START QUER."
1100 UTAB 23: INPUT "HIT RETURN
WHEN READY TO CONTINUE : ":A
NS\$
1110 HOME : UTAB 3: HTAB 10: PRINT
"*** SAFE CRACKER ***": UTAB
7
1120 PRINT "OH, BY THE WAY, ONCE
YOU HAVE TOUCHED THE SAFE
, YOU WILL HAVE THIRTY SECON
DS TO OPEN IT. WHEN THIRTY
SECONDS HAS PASSED, THE
SAFETY MECHANISM WILL CAUSE
A TERRIBLE EXPLOSION."
1130 UTAB 23: INPUT "HIT RETURN
WHEN READY TO CONTINUE: ":A
NS多
1990 RETURN
2000:
2001 REM *** SETUP
2002:
2010N1 = INT (RND (1) * G0) +
1
2011 N2 = INT (RND (1) * GD) +
1: IF N2 > = N1 THEN 2010

```

```

2012 N3 = INT (RND (1) * G0) +
1: IF N3 < = N2 THEN 2010
2020 HOME: UTAB 3: HTAB 10: PRINT
"*** SAFE CRACKER ***"
2030 INVERSE : UTAB 5: HTAB 14: PRINT
" ": UTAB 15: HTAB
14: PRINT " "
2035 FOR I = G TO 14: UTAB I: HTAB
14: PRINT " ": HTAB 25: PRINT
" ":% NEXT : NORMAL
2040 TI=300:F=1:D=1
2045 v2 = 10:H2 = 19
2990 RETURN
3000
3001 REM *** PLAY
3002:
3010 TI = TI - 1:T = INT (TI / 1
0): UTAB 17: HTAB 15: PRINT
"TIME : ": UTAB 17: HTAB
22: PRINT T + 1
3015 IF T + 1 = THEN WL = 0: RETURN
3020 P = INT (PDL (0) / 4.25)
3022 UTAB 7: HTAB 19: PRINT " "
: UTAB 7: HTAB 19: PRINT P:
3023 GOSUB 3700
3024 IF P > AND F THEN UTAB }
: HTAB 1: PRINT "TURN DIAL":
UTAB 10: HTAB 1: PRINT "TO
THE LEFT": GOTO 3010
3025 IF P = © AND F THEN F = 0: UTAB
9: HTAB 1: PRINT "
:: UTAB 10: HTAB 1: PRINT "
";
3030 UTAB 7: HTAB 19: PRINT " "
: UTAB 7: HTAB 19: PRINT P:
3035 ON D GOTD 3040.3050.3060
3040 IF P < N1 THEN 3010
3041 IF P > N1 THEN GOSUB 3500:
GOSUB 3G00:F = 1: GOTD 3010

```
```

3042 GOSUB 3500:D = 2: GOTO 3010
3050 IF P > N1 THEN GOSUB 3600:
F = 1:D = 1: GOTO 3010
3054 IF P > N2 THEN 3010
3056 IF P < N2 THEN GOSUB 3500:
GOSUB 3600:F = 1: GOTO 3010
3058 GOSUB 3500:D = 3: GOTO 3010
3060 IF P < N2 THEN GOSUB 3600:
F = 1:D = 1: GOTO 3010
30G4 IF P < N3 THEN 3010
30G6 IF P > N3 THEN GOSUB 3500:
GOSUB 3600:F = 1: GOTD 3010
3068 GOSUB 3500:WL = 1: RETURN
3500 UTAB 5 + D: HTAB 30: PRINT
"<CLICK>": FOR I = 1 TO 10:X
X = PEEK (- 1633G): NEXT :
RETURN
3600 UTAB 5: HTAB 30: PRINT "
": UTAB 7: HTAB 30: PRINT
" ": UTAB 8: HTAB 30: PRINT
" ": RETURN
3700 PP = P - INT (P / 4) * 4: ON
PP + 1 GOTO 3701,3702,3703,3
704
3701 U = 10:H = 19: GOTO 3705
3702 U = 11:H = 20: GOTO 3705
3703 U = 12:H = 19: GOTO 3705
3704 v = 11:H = 18: GOTO 3705
3705 UTAB U2: HTAB H2: PRINT " "
;: UTAB U: HTAB H: PRINT "*"
::U2 = U:H2 = H: RETURN
3710 UTAB 23: HTAB 1: PRINT PP: RETURN
4000:
4001 REM *** END
4002:
4010 IF WL = 1 THEN 4040

```

4015 HOME : INUERSE : FOR I \(=1\) TO 10: UTAB I: PRINT "********* **************************** ***": UTAB \(21-\) I: PRINT "* **************************** ***********":

4020 VTAB 10: HTAB 10: PRINT " < << B D D M \ggg ": FOR \(I=1\) TO 100:XX = PEEK ( 16336) + PEEK ( - 16336) PEEK ( - 1633G): NEXT
4030 UTAB 22: PRINT "THE COMBINA
TION WAS: ":N1"-"N2"-"N3: RETURN

4040 UTAB 21: PRINT CHR
(7): CHR \({ }^{(7): " T H E ~ P A P E R S ~ A R ~}\)

E YOURS !!!": PRINT "YOUR CO LLEAGUES WILL BE QUITE IMPRE SSED.": RETURN



This is another two-player paddle game. Each player controls the up-and-down movements of a flying saucer. The object is to shoot your opponent's ship. The first player to do this three times is the winner. Line 3010 is responsible for, among other things, drawing the field of stars through which you must shoot. Lines 3520 and 3570 black out the prior position of each ship. To verify this, change COLOR = 0 to COLOR = 1. Each time saucer \#1 is moved, line 3605 draws the saucer in the new position. Line 3705 does the same for saucer \#2. Line 3872 blacks out the previous position of each bomb that you shoot. Change COLOR \(=0\) to COLOR \(=8\). If you manage to shoot your opponent, line 3950 draws the magenta (COLOR = 1) squares, and makes the corresponding noises (PEEK ( -16336 )).
```

10 REM ********************
11 REM *** ***
12 REM *** SAUCER DUELS ***
13 REM **** ***
1 4 REM ********************
15 REM
16 REM
20 GOSUB 1000: REM INSTS
30 GOSUB 2000: REM SETUP
40 GOSUB 3000: REM PLAY!
50 GOSUB 4000: REM !END!
GO END
1000:
1001 REM *** INSTS
1002:
1010 TEXT : NORMAL : HOME
1020 VTAB 3: HTAB 10: PRINT "***
SAUCER DUELS ***"
1030 UTAB 7: PRINT "THIS IS A TW
\square-PLAYER GAME. EACH PLAYER
CONTROLS A FLYING SAUCER BY
USING THE PADDLES."
1035 PRINT
1040 PRINT "PADDLE O IS FOR PLAY
ER \#1, AND IS ON THELEFT SID
E OF THE SCREEN. PADDLE 1 I
5 FOR PLAYER \#2, AND IS ON
THE RIGHT SIDE OF THE SCREE
N."
1045 PRINT
1050 PRINT "MOVE THE SAUCERS UP
AND DOWN WITH THE PADDLE C
ONTROL. TO SHOOT AT THE ENE
MY SHIP, PRESS YOUR BUTTON.
THE FIRST ONE TO SCORE THR
EE HITS WINS THE GAME."
10G0 UTAB 23: INPUT "HIT RETURN
WHEN READY TO CONTNUE : ":AN
S\$
1990 RETURN
2000:
2001 REM *** SETUP
2002:

```

```

2020 DEF FN R(X) = INT (RND (
1) * X)
2990 RETURN
3000:
3001 REM *** PLAY
3002:
3005F1=0:F2=0:HI= =:L2=-
1:L4 = - 1
3010 GR : HOME:FOR I = 1 TO 50
:X = FNR(24) + 8:Y = FNR
(40): COLOR= FN R(14): PLOT
X,Y: NEXT
3020 PRINT "PLAYER \#1
PLAYER 2":: PRINT
" "P1"
"P2
3030 GOSUB 3500: REM MOUE SHIPS
3040 GOSUB 3800: REM MOUE SHOTS
3050 IF HI = Ø THEN 3030
3060 IF HI = 1 THEN P1 = P1 + 1:
GOTO 3080
3070 IF HI = 2 THEN P2 = P2 + 1:
GOTO 3080
3080 IF P1 < 3 AND P2 < 3 THEN 3
005
3090 RETURN
3500 L1 = INT (PDL (0) / G.8):L
3 = INT (PDL (1) / G.8)
3510 IF L2 = L1 THEN 3550
3520 IF L2 < L1 THEN COLOR= 0: GOSUB
3600:L2 = L2 + 1: COLOR= 15:
GOSUB 3600: GOTO 3550
3530 COLOR= 0: GOSUB 3600:L2 = L
2 - 1: COLOR= 15: GOSUB 3600
: GOTO 3550
3550 IF L4 = L3 THEN 3590
3560 IF L4 < L3 THEN COLOR= 0: GOSUB
3700:L4 = L4 + 1: COLOR= 15:
GOSUB 3700: GOTO 3590

```
```

3570 COLOR= 0: GOSUB 3700:L4 = L
4 - 1: COLOR= 15: GOSUB 3700
: GOTO 3590
3590 RETURN
3G00 IF L2< © THEN RETURN
3605 HLIN 2,4 AT L2: HLIN 0.2 AT
L2 + 1: HLIN 4,G AT L2 + 1: HLIN
1.5 AT L2 + 2: RETURN
3700 IF L4 < O THEN RETURN
3705 HLIN 35,37 AT L4: HLIN 33.3
5 AT L4 + 1: HLIN 37.39 AT L
4 + 1: HLIN 34:38 AT L4 + 2:
RETURN
3800 IF F1 THEN 3850
3805 IF PEEK (- 1G287) < 128 THEN
3850
3810F1=1:X1=7:Y1=L2 + 1: COLOR=
12: PLOT X1,Y1
3850 IF F2 THEN 3870
3855 IF PEEK (- 1G28G) < 128 THEN
3870
38G0 F2 = 1:X2 = 32:Y2 = L4 + 1: COLOR=
12: PLOT X2,Y2
3870 FOR I = 1 TO 5
3 8 7 1 ~ I F ~ N O T ~ F 1 ~ T H E N ~ 3 8 8 0 ~
3872 COLOR= ©: PLOT X1,Y1
3873 X1 = X1 + 1: IF X1 > 39 THEN
F1 = 0: GOTO 3880
3875 IF SCRN (X1,Y1) = \ THEN COLOR=
12: PLOT X1,Y1: GOTO 3880
3876 IF SCRN(X1,Y1) < > 15 THEN
COLOR= 0: PLOT X1,Y1: GOSUB
3900:F1 = 0: GOTO 3880
3878 GOSUB 3950:HI = 1: RETURN
3880 IF NOT F2 THEN 3890
3882 COLOR= 0: PLOT K2,Y2
3883 X2= X2 - 1: IF X2< © THEN
F2 = 0: GOTD 3890
3885 IF SCRN(X2,Y2) = THEN COLOR=
12: PLOT X2,Y2: GOTO 3890
388G IF SCRN(X2,Y2) < > 15 THEN
COLOR= 0: PLOT X2,Y2: GOSUB
3900:F2 = 0: GOTO 3890

```
```

3888 GOSUB 3960:HI = 2: RETURN
3890 NEXT : RETURN
3900 FOR J = 1 TO 5:XX = PEEK (
- 16336): NEXT : RETURN
3950 COLOR= 1: FOR I = 1 TO 12: PLOT
X1 - E + FNR(7),Y1 - 1 + FN
R(3):XX = PEEK (- 16336) -
PEEK (- 16336) + PEEK (-
1G336) - PEEK (- 16336): NEXT
: RETURN
3960 COLOR= 1: FOR I = 1 TO 12: PLOT
X2 + FN R(7),YZ - 1 + FN R
(3):XX = PEEK (- 16336) -
PEEK (- 16336) + PEEK (-
1G336) - PEEK (- 16336): NEXT
: RETURN
4000:
4001 REM *** END
4002:
4010 HOME : PRINT "THE GAME IS O
UER !!!"
4020 IF P1 = 3 THEN PRINT "PLAY
ER NUMBER 1 IS THE WINNER !!
!"
4021 IF P2 = 3 THEN PRINT "PLAY
ER NUMBER 2 IS THE WINNER !!
!"
4990 RETURN

```



This whimsical name and the humorous object of the game serve to camoflage an excellent thinking-man's game. It is hard to imagine how a person could play, and not come away with a better understanding of the \(X, Y\) coordinate system. The premise is that you are trying to splat a mudball on the mudloving Schmoo. The elevation at which you aim the automatic mudball slinger determines how far the mudball will travel. The angle at which you shoot will be determined by the coordinates of the Schmoo. Following will be a list of coordinates and the angles they represent.
\begin{tabular}{llc}
X & Y & ANGLE \\
\hline 12239 & 0 & 0 \\
17866 & 17866 & 45 \\
0 & 23910 & 90 \\
-5888 & 5888 & 135 \\
-9400 & 0 & 180 \\
-25727 & -25727 & 225 \\
0 & -18992 & 270 \\
31101 & -31101 & 315
\end{tabular}

We hope this chart will help you to understand how the various coordinates relate to the angles.

```

1055 PRINT "THE MUDBALL. AFTER
EACH SHOT YOU WILL BE GIVENTHE COORDINATES WHERE THE M
UD LANDED.
10G0 PRINT : PRINT "FOR EXAMPLE,
IF THE SCHMOO'S COORDINATES
ARE (-5,10) THEN THE SCHMOD
IS ABOUT FIUE FEET TO YOU
R LEFT AND ABOUT TEN FEET
IN FRONT OF YOU."
1070 PRINT : PRINT "THE ELEVATIO
N FOR THE SHOT WOULD BE
ABOUT 89.95 DEGREES WHILE TH
E ANGLE WHERE THE SCHMOO
CAN BE FOUND IS ABOUT 110
DEGREES."
1080 PRINT : INPUT "HIT RETURN W
HEN READY TO CONTINUE : ":AN
S串
1090 HOME : UTAB 1: HTAB 13: PRINT
"*** SCHMOD ***": UTAB 5
1100 PRINT "THE MUDBALLS ARE LAR
GE ENOUGH TO MUDDY THE SCHM
OO AS LONG AS THEY LAND WITH
IN 100 FEET OF HIM."
1110 PRINT : PRINT : PRINT "NOW
THAT YOU KNOW HOW TO MAKE TH
E SCHMDOHAPPY, GO GET HIM.
GOOD LUCK!"
1120 UTAB 23: INPUT "HIT RETURN
WHEN READY TO CONTINUE: ":A
NS\$
1990 RETURN
2000
2001 REM *** SETUP
2002:
201051 = INT (RND (1) * 2) * 2
- 1:52 = INT (RND (1) * 2
) * 2-1
2020 5X = (INT (RND (1) * 2G000
) +5000) * 51:5Y = (INT (RND
(1) * 2G000) + 5000) * 51
2030 BELL\$ = CHR\$ (7)
2035 CNSTR = 3.1415926357989 / 18

```
2990 RETURN
3000:
3001 REM *** PLAY
3002:
3005 HOME : UTAB 3: HTAB 13: PRINT
    "*** SCHMOO ***": UTAB 7
3010 PRINT : PRINT BELL$"THE SCH
    MOO IS AT COORDINATES : ": PRINT
    "("5X","SY")"
3015 PRINT : PRINT "WHAT ELEVATI
    ON FOR THE": INPUT "MUDBALL
    SLINGER (0-90) : ";EL
3020 IF EL > 90 OR EL < 1 THEN PRINT
    "THE ELEUATION RANGES FROM 1
        TO 90...": GOTO 3015
3025 IF EL = 90 THEN PRINT "THA
        T WOULD SHOOT THE MUD STRAIG
        HT UP....AND IT WOULD COME D
        OWN ON TOP OF YOU!": GOTO 30
        15
3030 PRINT : PRINT "WHAT ANGLE 0
    F DIRECTION FOR THE": INPUT
    "MUDBALL SLINGER (0-3G0) : "
    #AN
3035 IF AN < OR AN > 3G0 THEN
                PRINT "THE ANGLES RANGES FR
    OM O TO 360.": GOTO 3030
3040 DM = ABS ( INT (93000 * SIN
    (EL * CN) * COS (EL * CN)))
3045 XM = DM * COS (AN * CN):YM =
    DM * SIN (AN * CN)
3050 DS = SQR ((SX - XM) * 2 + (
    SY - YM) * 2)
3055 PRINT : PRINT "THE MUD SPLA
    TTERED AT COORDIATES :": PRINT
    "(" INT (XM)"," INT (YM)")"
3050 TRY = TRY + 1
3065 IF DS < = 100 THEN PRINT
        : PRINT BELL$BELL$"THAT'S GO
        OD ENOUGH TO": PRINT "SPLAT
        THE SCHMOD !!!": RETURN
3070 GOTO 3010
4000:
```

4001 REM *** END
$4002:$
4010 PRINT: PRINT "YOU SPLATTED THE SCHMOD IN "TRY" TRIES."

4020 INPUT "DO YOU WISH TO PLAY AGAIN?":ANS
4030 IF LEFT (ANS $\$, 1$) $=$ "Y" THEN RUN
4035 PRINT: PRINT "THANKS FOR 5 PLATTING THE SCHMOD !!"
4990 RETURN

True to its name, the object is to dodge the stars for as long as possible. Don't try to intercept the stars. If you do, you lose! This program is run entirely in the TEXT mode. This is done to aid your understanding of the graphics by using text format commands in place of graphic commands. You may notice the absence of certain commands, such as: HLIN, PLOT COLOR, GR, and others. Line 3055 uses an HTAB and a VTAB and a PRINT statement instead of: PLOT (variable name) AT SX,SY.

What do those POKES do in lines 2100 and 2110 do? If you add 2099 GOTO 2990 to isolate these lines from the program you will be suprised. The program runs just the same! But does it? If you already ran the program the POKES put a machine language routine in memory that stays there even when you type RUN, NEW, or even PR\#6. Turn the computer off and on. Load Stardodger (don't run it). Type 2099 GOTO 2990 and run the program. Now you see that these lines created the sounds that accompanied the stars as they popped onto the screen. The sounds are CALL(ed) in line 3035. You can make your own music with this machine language routine and add sounds to your own programs.

DEL(ete) all of the program except lines 2100 and 2110
ADD:
$2120 \mathrm{X}=\mathrm{PDL}(0): Y=\operatorname{PDL}(1)$
2130 POKE D,X :PDKE 1 , Y
2140 CALL 768
2150 GOTO 2120

You will have an instrument that plays background music for low budget science fiction movies.

Another variation on that theme:

2120 GET A

$2130 \mathrm{X}=\mathrm{ASC}$ (A末)
2140 POKE D, X:POKE 1,50
2150 CALL768
2160 GOTO 2120
Turns the Apple keyboard into a piano; even the control keys and RETURN play music.

1035 PRINT : PRINT "YOU MUST TRY to avoid colliding With the STARS. EACH COLLISION WITH THE STARS DRAINS POWER FRO M Your ship's protectiveshie LDS."
1040 PRINT: PRINT "YOU HAVE FIU E ATTEMPTS TO REACH THE HOME base before your shields giv E OUT. AT THIS POINT, THE NEXT COLLISION WILL FINDYOUR SHIP WITH NO POWER AND THE SHIP WILL BE DESTROYED > BOOM! <"
1043 PRINT
1045 CALL - 958: PRINT "HOW DO YOU RATE YOURSELF ?": INPUT " 1=POOR ... $10=$ GREAT. "\#ANS: IF ANS < 1 OR ANS > 10 OR A NS < > INT (ANS) THEN 1045
1990 RETURN
$2000:$
2001 REM *** SETUP
$2002:$
2010 DEF $F N R(X)=I N T(R N D($ 1) * X) + 1
2015 NT $=5$
2020 DUR $=(11-$ ANS $) * 5$
2025 BE $=$ CHR ${ }^{2}$ (7)
2100 POKE 768.173: POKE 769,48: POKE 770.192: POKE 771,136: POKE 772,208: POKE 773,4: POKE 77 4.198: POKE 775,1: POKE 776, 240
2110 POKE 777,8: POKE 778,202: POKE 779,208: POKE 780,246: POKE 781,166: POKE 782,0: POKE 78 3.76: POKE 784,0: POKE 785,3 : POKE 786,96
2990 RETURN
$3000:$
3001 REM *** PLAY

```
3002:
3010 HOME : UTAB 10: IF NT > 1 THEN
                PRINT NT" ATTEMPTS REMAIN !
    !!": GOTO 3014
3012 PRINT "1 ATTEMPT REMAINS !!
    !"
3014 FOR I = 1 TO 1000: NEXT I
3015 5X = FN R(38):SY = 1: HOME
3017 X2 = 5X:Y2 = 5Y
3020 UTAB 5Y: HTAB 5X: PRINT "
        "::SX = X2:SY = Y2
3025 FOR I = 1 TO ANS / 3: UTAB
        24: HTAB FN R(40): PRINT MID$
        ("*+#X", FN R(4),1):: NEXT I
        : UTAB 24: HTAB 40: PRINT
3035 POKE D, FN R(50) + 200: POKE
        1,DUR: CALL 768
3040 IF SCRN( 5X - 1.5Y * 2)<
        > D OR SCRN( 5X,5Y * 2) <
        > O OR SCRN( 5X + 1,SY * 2
        )< > O THEN 3100
3045 IF PDL (0) < 20 THEN X2 =
        5X - 2: GOTO 3050
304G IF PDL (0) < 90 THEN X2 =
        5X - 1: GOTO 3050
3047 IF PDL (0) > }165\mathrm{ THEN X2 =
        5X + 1: GOTO 3050
3048 IF PDL (0) > 235 THEN X2 =
    5X + 2: GOTO 3050
3050 IF X2< < THEN X2 = 1
3051 IF X2 > 38 THEN X2 = 38
3055 UTAB 5Y: HTAB 5X: PRINT "<*
        >":YZ = SY
30E0 CNT = CNT + 1: IF CNT = 8 THEN
        CNT = Ø:Y2 = Y2 + 1: IF Y2 =
        20 THEN 3200
3065 FOR I = 1 TO 50: NEXT
3070 GOTO 3020
3100 5X = 5X - 2: IF SX < 1 THEN
        5X = 1
3110 5Y = 5Y - 2: IF 5Y < 1 THEN
        SY = 1
```

```
3120 FOR I = 1 TO 5: FOR J = SY TO
    SY + 4: HTAB X2 + I - 1: UTAB
    J
3130 PRINT MID㐁("......,*,--
        --+++++XXXXX")(I - 1) * 5 +
        1,5):% NEXT J: PRINT BE&: NEXT
        I
3160NT = NT - 1: IF NT > O THEN
    3010
3200 RETURN
4000:
4001 REM *** END
4002:
4010 UTAB 21: HTAB 1: CALL - 95
    8: UTAB 22
4020 IF NT = O THEN PRINT BE&BE
    $BE&"I'M SORRY, BUT YOU LOST
        ...": RETURN
4030 PRINT BE&BE&BE&"YOU WON !!!
    CONGRATULATIONS !!!": RETURN
4990 RETURN
```


Grab a friend and get ready for some heated competition. The object of this game is to wall-in your opponent and to prevent him from moving. On each turn, you enter the coordinates of the adjacent square you would like to move into, plus, you enter the coordinates of a square you wish to become uninhabitable. The first player unable to move loses the game. Line 2030 switches the mode to GRaphics. Next, the color is set to a yellowish-green (COLOR = 12). Line 2031 draws a Horizontal LINe starting at position zero and continuing to position thirty-two. The result is a solid yellowish-green block, 32 by 32. Line 2033 sets the color to 15 (white), and then begins a loop (consisting of nine passes). Line 2034 draws a white Horizontal LINe on top of every fourth green line. This line also instructs the computer to draw a Vertical LINe at each value of " I ". The result is an 8 by 8 matrix, comprised of 64 green squares, each with a white border. Lines 2040 and 2041 (and 5001) draw the magenta $(C O L O R=1)$ and the light green $(C O L O R=14)$ squares which mark each player's beginning position. To verify this, type: 2041 STOP (then return). Now when you run the program, it will STOP at line 2041. Only the square drawn by line 2040 be displayed. To undo any change, type: LOAD STRANDED. When this is done, a copy of the old, unaltered program is moved from permanent storage on diskette into the computer's memory, where it can be modified and/or run.

3100 INPUT "BLOCK AT: ":X2,Y2: IF $X 2<1$ OR $X 2>8$ OR $Y 2<1$ OR $Y 2>8$ OR $X 2<>$ INT (X2) DR $Y 2<>$ INT $(Y 2)$ THEN 3100
3110 IF $M(X 2, Y 2)<>\operatorname{THEN} 310$ \emptyset
$3120 M(X 2, Y 2)=3: C O=0: X=X 2: Y$ = Y2: GOSUB 5000
$3200 K=3-P L: F O R J=1$ TO $8: X$ $4=\operatorname{DR}(J, 1)+P(K, K): Y 4=D$ $\operatorname{IR}(J, 2)+P(K, K+1)$
3210 IF $\times 4<1$ OR $\times 4>8$ OR $Y 4$ < 1 OR Y $4>8$ THEN 3250
3220 IF $M(X 4, Y 4)<\geqslant$ THEN 325
0
$3230 \mathrm{~J}=8:$ NEXT J: GOTO 3990
3250 NEXT J: RETURN
3990 NEXT
3995 GOTD 3010
$4000:$
4001 REM *** END
$4002:$
4010 HOME: PRINT "THE GAME IS 0 VER.....": PRINT "PLAYER NUM BER "PL" IS THE WINNER !"
4020 RETURN
5000 REM *** DRAW A SQUARE
5001 COLOR $=$ CO: FOR $I=F N C(X)$
TO FN $C(X)+2:$ HLIN FN C (Y). FN $C(Y)+2$ AT I: NEXT : RETURN

This game requires good timing. A small, moving target is the object of your marksman talent. The angle of each shot depends on the angle of the pad. Unlike most of the games where the game board is drawn in the the ' 2000^{\prime} subroutine, here, all of the GRaphics are drawn in the ' 3000 ' subroutine. Looking at the graphics, line 3010 draws a light blue (COLOR = 7) perimeter around the target area. This can be verified by typing: 3012 STOP. Now when you run the program, the execution will STOP immediately following the completion of 3010 . All that will be on the screen is the blue outline. Line 3030 draws the launching pad in a symmetrical configuration, but at a RaNDom location and utilizing a RaNDom five-dot design. Again, to confirm the function of line 3030, type: 3029 STOP and 3031 STOP. When the program encounters a STOP command, you can CONTinue the execution (the run) by typing CONT. Line 3040 draws the pink (COLOR = 11) target at its original position and each time it moves down the screen. Also, note that before the color equals eleven, the color is set to zero (black). To understand the function of the first part of line 3030, change COLOR $=0$ to COLOR $=1$. The function of line 3075 is similar to that of line 3030. Experiment with this group of instructions to see if you can discover 3075's purpose.

| 10 | REM $\mathrm{R}^{*}+*^{* * * * * * * * * * * * * * * * ~}$ |
| :---: | :---: |
| 11 R | REM *** *** |
| 12 R | REM *** TARGET *** |
| 13 R | REM *** ${ }^{*}$ ** |
| 14 R | ******************** |
| 15 R | REM |
| 16 F | REM |
| 20. | GOSUB 1000: REM INSTS |
| 40 - | GOSUB 3000: REM PLAY! |
| E0 E | END |
| 1000 | : |
| 1001 | REM *** INSTS |
| 1002 | 2 |
| 1010 | TEXT : NORMAL : HOME |
| 1020 | UTAB 3: HTAB 13: PRINT "*** TARGET ***" |
| 1030 | YOU TRY TO HIT A MOUING |
| | TARGET. BY PRESSING ANY KEY |
| | , A SMALL BALL WILL BEFIR |
| | ED FROM THE PADDLE ON THE |
| | SCREEN." |
| 1040 | PRINT : PRINT "YOU MUST TIM |
| | E THE RELEASE SUCH THAT THE |
| | SMALL BALL HITS THE LARGER \square |
| | NE. THE DIRECTION AND DI |
| | STANCE WILL UARY WITH EACH |
| | NEW TARGET." |
| 1090 | UTAB 23: INPUT "HIT RETURN |
| | WHEN READY TO CONTINUE: ";A |
| | NS ${ }^{\text {¢ }}$ |
| 1990 | RETURN |
| 3000 | : |
| 3001 | REM *** PLAY |
| 3002 | 2 |
| 3010 | GR : HOME : COLOR= 7: HLIN |
| | 0.39 AT 0: HLIN 0.39 AT 39: ULIN |
| | 0.39 AT 0: ULIN 0.39 AT 39 |
| 3015 | HOME: UTAB 22: HTAB 10: PRINT |
| | "SCORE: ":SC:" SHOTS: ";5 |
| | H |
| 3020 | IF SH THEN UTAB 23: HTAB 1 |
| | 4: PRINT "PCENT: "; INT (SC / |
| | 5H * 100):"\%" |

```
3025 PM = INT ( RND (1) * 2) * 2
    - 1:XP = INT ( RND (1) * 1
    0) + 10:YP = INT (RND (1) *
    10) + 15:5P = INT (RND (1)
    * 3) * PM:FLAG = 0
3030 COLDR= 9: PLOT XP + (2 * SP
    ):YP - 2: PLOT XP + SP:YP -
    1: PLOT XP,YP: PLOT XP - SP,
    YP + 1: PLOT XP - (2 * SP):Y
    P + 2
3035 <2 = INT (RND (1) * 10) +
    25:Y2 = 1:52 = INT ( RND (1
    ) * 2) + 1:X3 = X2:Y3 = Y2
3040 COLOR= 0: FOR I = X3 - 1 TO
    X3 + 1: VLIN Y3,Y3 + 2 AT I:
        NEXT : COLOR= 11: FOR I = X
    2-1 T0 K2 + 1: ULIN Y2,Y2 +
    2 AT I: NEXT
3045 %3= X2:Y3 = Y2: IF FL THEN
    3070
3050 IF PEEK ( - 16384) < 127 THEN
    3600
3055 POKE - 1G3G8,0:FL = 1:B1 =
    XP + 1:B2 = YP:B3 = B1:B4 =
    B2:5H = 5H + 1
30G0 HOME : UTAB 22: HTAB 10: PRINT
    "SCORE: ";SC;" SHOTS: ";S
    H
30G5 UTAB 23: HTAB 14: PRINT "PC
    ENT: "; INT (SC / SH * 100):
    "%": IF B1 < > B3 AND SCRN(
    B3,B4) < > 15 THEN 3095
3070 IF SCRN( B3,B4) = 11 THEN
    3095
3075 COLOR= @: PLOT B3,B4: COLOR=
    15: PLDT B1,B2:B3 = B1:B4=
    B2:B1 = B1 + 1:B2 = B2 + 5P
3080 IF B2 < 1 OR B2 > 38 THEN B
    2 = B4:SP = - SP: GOTD 3GDD
3085 IF B1 > 3G THEN COLOR= @: PLOT
    B3,B4:FLAG = 0:SP = ABS (SP
    ) * PM: GOTD 3GDD
```

```
3090 IF SCRN( B1,B2) = 0 THEN 3
    600
3095 5C = SC + 1: GOTO 3010
3600 Y2 = Y2 + 1: IF Y2 > 3G THEN
        Y2=1
3E10 GOTO 3040
3990 RETURN
```


In this game the object is to avoid the relentless pursuit of the horrible Twinky, and to escape from the danger-filled labyrinth. There are a plethora of obstacles which impede your escape. There are twenty squares which relocate you somewhere in the maze. There are twenty squares which cannot be entered. There is one square which contains an extremely sensitive exploding device. If you move onto this space, the ensuing blast will end your perilous journey . . . and your life.
10 REM $\mathrm{R}^{*} * * * * * * * * * * * * * * * * * *$
11 REM *** ***
12 REM *** TWINKY ***
13 REM *** ***
14 REM ********************
15 REM
16 REM
20 GOSUB 1000: REM INSTS
30 GOSUB 2000: REM SETUP
40 GOSUB 3000: REM PLAY!
ED END
$1000:$
1001 REM *** INSTS
$1002:$
1010 TEXT: HOME : NORMAL
1020 UTAB 2: HTAB 13: PRINT "***
TWINKY ***"
1030 UTAB 5: PRINT "THIS IS THE
GAME OF TWINKY. IN IT YOU
PRETEND TO BE A SPACE EXPLOR
ER WHO HAS LANDED ON A HOST
ILE PLANET.
1040 PRINT: PRINT "CAPTURED BY
THE UNFRIENDLY NATIUES, YOU
ARE TOSSED INTD A LARGE PRIS
ON ALONG WITH A FEROCIOUS
TWINKY."
1050 PRINT: PRINT "A TWINKY IS
A HORRIBLE CREATURE THAT
WILL CATCH YOU AND ABSORB YO
UR BODY INTOHIS IF HE GETS C
LOSER THAN TWO UNITS AWAY
FROM YOU."
10G0 UTAB 23: INPUT "HIT RETURN
WHEN READY TO CONTINUE:":AN
S
1070 HOME : UTAB 2: HTAB 13: PRINT
"*** TWINKY ***": UTAB 5
1080 PRINT "IN THE INTEREST OF F
AIR PLAY, YOU ARE GIUEN A
ZAP GUN THAT WILL TEMPORARIL
Y CHASE THE TWINKY AWAY."

```
1090 PRINT : PRINT "ALSO, IF YOU
                CAN MAKE IT TO THE SPECIAL
    OBJECTIUE SQUARE BEFORE BEIN
    G AbSORBED, YOU WILL BE SET
    FREE."
1100 PRINT : PRINT "AFTER YOU MO
    VE, YOU WILL BE INFORMED OF
    YOUR DISTANCE FROM THE OBJEC
    TIVE SQUARE AS WELL AS FROM
    THE TWINKY. "
1110 UTAB 23: INPUT "HIT RETURN
    WHEN READY TO CONTINUE :";AN
    5$
1120 HOME : UTAB 2: HTAB 13: PRINT
    "*** TWINKY ***": UTAB 5
1130 PRINT "THERE ARE SEUERAL OT
    HER OBJECTS WITHIN THE MAZE
        WHICH ARE OF INTEREST."
1140 PRINT : PRINT "THERE ARE TW
    ENTY RELOCATION SQUARES.
    THESE SQUARES SEND YOU TO SO
    ME OTHER SECTION OF THE M
    AZE. "
1150 PRINT : PRINT "THERE ARE TW
    ENTY IMPREGNABLE SQUARES
    WHICH YOU CANNOT ENTER."
1160 PRINT : PRINT "THERE IS ONE
        SUPER DEADLY AUTOMATIC KILL
    SQUARE WHICH ENDS YOUR ORDEA
    L QUICKLY AND PAINLESSLY."
1170 PRINT : PRINT : PRINT "THAT
    'S IT... TRY TO ENJOY IT !"
1180 UTAB 23: INPUT "HIT RETURN
    WHEN READY TO CONTINUE :":AN
    5$
1990 RETURN
2000:
2001 REM *** SETUP
2002:
2010 DIM MA(15,15)
2015 DEF FN R(X) = INT ( RND (
    1) * X) + 1: DEF FN A(X) =
    .001 * INT (X * 1000 + .5)
```

```
2020 FOR I = 1 TO 20
2025 X = FN R(15):Y = FN R(15):
IF MA(X,Y) THEN 2025
2030 MA(X,Y) = 1: NEXT I: REM **
    * BLOCKED
2040 FOR I = 1 T0 20
2045 X = FN R(15):Y = FN R(15):
IF MA(X,Y) THEN 2045
2050 MA(X,Y) = 2: NEXT I: REM **
    * RELOCATION
2065 X = FN R(15):Y = FN R(15):
    IF MA(X,Y) THEN 2065
2070 MA(X,Y) = 3: REM *** SUPER
    KILL
2075 XO = FN R(15):YO = FN R(15
    ): IF MA(XO,YO) THEN 2075
2080 MA(XO,YO) = 4: REM *** OBJE
    CTIUE
2085 XT = FN R(15):YT = FN R(15
    ): IF MA(XT,YT) THEN 2085
2090 MA(XT,YT) = 5: REM *** TWIN
    KY
2095 XP = FN R(15):YP = FN R(15
        ): IF MA(XP,YP) THEN 2095
2100 MA(XP,YP) = 6: REM *** PLAY
    ER
2110 ST = #:SP = \emptyset
2990 RETURN
3000:
3001 REM *** PLAY
3002:
3010 HOME : UTAB 3: HTAB 13: PRINT
    "*** TWINKY ***": PRINT : PRINT
    : PRINT
3020 DT = FN A( SQR ((XT - XP) *
    2 + (YT - YP) * 2))
3021 DO = FN A( SQR ((XP - XO) *
    2 + (YP - YO) * 2))
3025 PRINT : PRINT "THE TWINKY I
        S "DT" UNITS AWAY"
3026 PRINT : PRINT "THE OBJECTIU
        E IS "DO" UNITS AWAY"
```

3028 IF DT < 2 THEN: PRINT: PRINT
"《<<< S CHL D ロ R P ! ! $\rangle\rangle\rangle\rangle$ " PRINT "YOU'VE BEEN
ABSORBED BY THE TWINKY !!!": PRINT "YOU LOSE.":WL = 1: GOSUB 3600: RETURN
3030 PRINT: INPUT "MOUE OR SHOO T (M/S): ":ANS\$
3035 ANS $=$ LEFT $=$ (ANS $=1$) : IFA
 5" THEN PRINT "TYPE IN 'M' OR 'S'": GOTO 3030
3040 IF ANS $=$ "S" THEN 3300
3100 PRINT: PRINT "FORWARD, BAC KWARD,": INPUT "RIGHT OR LEF T (F/B/R/L): ":ANS
3105 ANS $=$ LEFT $=($ ANS $\$, 1):$ IF A
 B" AND ANS \& < $>$ "R" AND ANS \& < > "L" THEN PRINT "TYPE IN 'F' OR 'B' OR 'R' OR 'L' ": GOTO 3100
3110 IF ANS $=$ "F" THEN $X=0: Y=$ - 1: GOTO 3120

3111 IF ANS $=$ "B" THEN $X=\emptyset: Y=$ 1: GOTO 3120
3112 IF ANS $=$ "R" THEN $X=1: Y=$ D: GOTD 3120
3113 IF ANS $=$ "L" THEN $X=-1$ $: Y=0: \operatorname{GOTO} 3120$
$3120 X=X+X P: Y=Y+Y P$ 3125 IF $X<1$ OR $X>15$ OR Y < 1 OR $Y>15$ THEN PRINT "THAT WOULD TAKE YOU OUT OF THE M AZE": PRINT "MOUE NOT ALLOWE D": GOTD 3500
3130 IF $M A(X, Y)=1$ THEN PRINT "THAT SPACE IS BLOCKED": PRINT "MOUE NOT ALLOWED": GOTD 350 0

```
3140 IF MA (X,Y) = 3 THEN PRINT
        "YOU FOUND THE SUPER KILL SQ
        UARE!!!": PRINT "MOUE ALLOWE
        D BUT,": PRINT "YOU'VE BEEN
        KILLED!!!":WL = 1: RETURN
3145 IF MA(X,Y) = 4 THEN PRINT
    "YOU FOUND THE OBJECTIUE !!!
    ": PRINT "MDUE ALLOWED AND;"
    : PRINT "YOU WIN A TRIP DFF
    THIS PLANET !!!":WL = 0: RETURN
3150 IF MA (X,Y) = 5 THEN PRINT
    "MOVE ALLOWED": PRINT : PRINT
    : PRINT "<<<<< S C H L D D R
        P ! ! ! >>>>>": PRINT "YOU'
    VE BEEN ABSORBED BY THE TWIN
    KY !!!": PRINT "YOU LOSE.":W
    L = 1: GOSUB 3600: RETURN
3155 PRINT "MOUE ALLOWED":MA(XP,
    YP) = SP:XP = X:YP = Y:SP =
    MA(XP,YP):MA(XP,YP) = G: GOTD
    3500
3200 PRINT "..... YOU'VE BEEN RE
    LOCATED ....."
3205 X = FN R(15):Y = FNR(15)
3210 IF MA (X,Y) = 1 THEN 3205
3215 GOTD 3135
3300 PRINT : PRINT "FORWARD, BAC
    KWARD,": INPUT "RIGHT OR LEF
    T (F/B/R/L): ";ANS$
3305 ANS& = LEFT& (ANS&,1): IF A
    NS&< > "F" AND ANS$< > "
    B" AND ANS$< > "R" AND ANS
    & < > "L" THEN PRINT "TYPE
        IN 'F' OR 'B' OR 'R' OR 'L'
    ": GOTO 3300
3310 IF ANS$ = "F" THEN X = 0:Y=
        - 1: GOTD 3320
3311 IF ANS叓 = "B" THEN }X=0:Y
    1: GOTD 3320
3312 IF ANS$ = "R" THEN X = 1:Y =
    0: GOTD 3320
3313 IF ANS$ = "L" THEN X = - 1
    :Y = 0: GOTO 3320
```

```
3320 SX = XP:SY = YP
3325 5X = 5X + X:SY = 5Y + Y: PRINT
    "ZAP--""
3330 IF SX < 1 OR SX > 15 OR SY <
    1 OR SY > 15 THEN PRINT "FI
    ZZLE...": PRINT "THE SHOT LE
    FT THE MAZE,": PRINT "THE SH
    OT MISSED THE TWINKY!": GOTD
    3500
3335 IF MA(5X,5Y) = OR MA(5X,5
    Y) = 2 OR MA(5X,SY) = 3 OR M
    A(SX,5Y) = 4 THEN 3325
3345 IF MA(SX,SY) = 1 THEN PRINT
    "BLAST !!": PRINT "THE SHOT
    HIT A WALL": PRINT "THE SHOT
        MISSED": GOTD 3500
3350 PRINT "OUCH !!!": PRINT "TH
    E SHOT HIT THE TWINKY": PRINT
    "THE TWINKY RETREATES"
3355 MA (5X,5Y) = 5T:XT = FN R(15
    ):YT = FN R(15):ST = MA(XT,
    YT):MA(XT,YT) = 5: GOTO 3500
3500 REM *** TWINKY MOUE LOGIC
3520 DT = FN A( SQR ((XT - XP) *
    2 + (YT - YP) * 2))
3521 DO = FN A( SQR ((XP - XO) *
    2 + (YP - YO) * 2))
3525 PRINT : PRINT "THE TWINKY I
    S "DT" UNITS AWAY."
352G PRINT "THE OBJECTIUE IS "DO
    " UNITS AWAY."
3527 PRINT: PRINT "THE TWINKY M
    OUES .."": FOR I = 1 TO 500:
        NEXT I
3528 IF DT < 2 THEN PRINT : PRINT
    "<<<< S C H L D D R P ! ! !
        >>>>>": PRINT "YOU'VE BEEN
        ABSORBED BY THE TWINKY !!!":
        PRINT "YOU LOSE.":WL = 1: GOSUB
    3G@D: RETURN
3530 IF XP < XT THEN X = - 1:Y =
    0: GOTD 3540
```

3531 IF $X P>X T$ THEN $X=1: Y=0$: GOTO 3540
3532 IF YP \& YT THEN $X=0: Y=-$ 1: GOTO 3540
3533 IF $Y P$ Y $Y T$ THEN $X=0: Y=1$: GOTO 3540
$3540 \mathrm{MA}(X T, Y T)=5 T: X T=X T+X: Y$ $T=Y T+Y: S T=M A(X T, Y T): M A$ $(X T, Y T)=5:$ GOTO 3020
3600 FDR I $=1$ TO $40: X X=$ PEEK
$(-16336)+$ PEEK $(-16336$
) + PEEK (- 16336): FOR $\rfloor=$ 1 TO 5: NEXT J,I: RETURN
3990 RETURN

GAMES
 APPLES PLAY

 GAMES APPLES PLAY ON DISK!

 GAMES APPLES PLAY ON DISK!
 !!! Save hours of typing and de-bugging !!! ONLY $\$ 15.95$ WITH THIS COUPON and...

 ONLY available to readers of this book

 ONLY available to readers of this book}

\author{

* Spend your time playing the games and writing your own versions
 * Use the sound routines and graphics in your own programs
 * Games may be copied, listed and modified
 * Let your fingers do the playing, not the repetitious typing!
}

Send to: © DATAMOST:
8943 Fullbright Avenue

WHAT BETTER WAY TO LEARN PROGRAMMING THAN BY PLAYING GAMES?

The authors have compiled a selection of classic Apple games along with many clever new games. Written in Applesoft BASIC, they are formatted in a way which lets you adapt any of the routines to your own programs. Also, each game is explained in easy-to-understand terms allowing you to modify and customize to your heart's content!

You'll learn principles of text formatting, word games, data statements, and input routines. Many of the games will help you understand how grids are constructed and graphics animated. Techniques are given which allow you to dissect Basic programs and see what makes them tick.

You'll have hours of fun learning to program in this easy, enjoyable way. And when you're done, you'll have the games to play! Whoever thought that gaming could teach so much about programming and de-bugging?

RESTON PUBLISHING COMPANY, INC.
A Prentice-Hall Company
Reston, Virginia
ISBN 0-8359-2417-3

GAMES APPLES PLAY

From

8943 Fullbright Avenue
Chatsworth, CA 91311
(213) 709-1202

Company
Inc．

